Machine learning-based non-invasive continuous dynamic monitoring of human core temperature with wearable dual temperature sensors.

IF 2.3 4区 医学 Q3 BIOPHYSICS
Haotian Liang, Yishan Wang, Linbo Jiang, Xinming Yu, Linghao Xiong, Liang Luo, Le Fu, Yu Zhang, Ye Li, Jinzhong Song, Fangmin Sun
{"title":"Machine learning-based non-invasive continuous dynamic monitoring of human core temperature with wearable dual temperature sensors.","authors":"Haotian Liang, Yishan Wang, Linbo Jiang, Xinming Yu, Linghao Xiong, Liang Luo, Le Fu, Yu Zhang, Ye Li, Jinzhong Song, Fangmin Sun","doi":"10.1088/1361-6579/adbf64","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Due to the growing demand for personal health monitoring in extreme environments, continuous monitoring of core temperature has become increasingly important. Traditional monitoring methods, such as mercury thermometers and infrared thermometers, may have limitations in tracking real-time fluctuations in core temperature, especially in special application scenarios such as firefighting, military, and aerospace. This study aims to develop a non-invasive, continuous core temperature prediction model based on machine learning, addressing the limitations of traditional methods in extreme environments.<i>Approach.</i>This study develops a novel machine learning-based non-invasive continuous body core temperature monitoring model. A wearable dual temperature sensing device is designed to collect skin and environment temperature, six machine learning algorithms are trained utilizing data from 62 subjects.<i>Main results.</i>Performance evaluations on a test set of 10 subjects reveal outstanding results, achieving a mean absolute error of 0.15 °C ± 0.04 °C, a root mean square error of 0.17 °C ± 0.05 °C, and a mean absolute percentage error of 0.40% ± 0.12%. Statistical analysis further confirms the model's superior predictive capability compared to traditional methods.<i>Significance.</i>The developed temperature monitoring model not only provides enhanced accuracy in various conditions but also serves as a robust tool for individual health monitoring. This innovation is particularly significant in scenarios requiring continuous and precise temperature tracking, and offering entirely new insights for improved health management strategies and outcomes.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adbf64","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Due to the growing demand for personal health monitoring in extreme environments, continuous monitoring of core temperature has become increasingly important. Traditional monitoring methods, such as mercury thermometers and infrared thermometers, may have limitations in tracking real-time fluctuations in core temperature, especially in special application scenarios such as firefighting, military, and aerospace. This study aims to develop a non-invasive, continuous core temperature prediction model based on machine learning, addressing the limitations of traditional methods in extreme environments.Approach.This study develops a novel machine learning-based non-invasive continuous body core temperature monitoring model. A wearable dual temperature sensing device is designed to collect skin and environment temperature, six machine learning algorithms are trained utilizing data from 62 subjects.Main results.Performance evaluations on a test set of 10 subjects reveal outstanding results, achieving a mean absolute error of 0.15 °C ± 0.04 °C, a root mean square error of 0.17 °C ± 0.05 °C, and a mean absolute percentage error of 0.40% ± 0.12%. Statistical analysis further confirms the model's superior predictive capability compared to traditional methods.Significance.The developed temperature monitoring model not only provides enhanced accuracy in various conditions but also serves as a robust tool for individual health monitoring. This innovation is particularly significant in scenarios requiring continuous and precise temperature tracking, and offering entirely new insights for improved health management strategies and outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信