Mariana A Campbell, Vinay Udyawer, Craig White, Cameron J Baker, R Keller Kopf, Yusuke Fukuda, Timothy D Jardine, Stuart E Bunn, Hamish A Campbell
{"title":"Quantifying the ecological role of crocodiles: a 50-year review of metabolic requirements and nutrient contributions in northern Australia.","authors":"Mariana A Campbell, Vinay Udyawer, Craig White, Cameron J Baker, R Keller Kopf, Yusuke Fukuda, Timothy D Jardine, Stuart E Bunn, Hamish A Campbell","doi":"10.1098/rspb.2024.2260","DOIUrl":null,"url":null,"abstract":"<p><p>The ecological roles of large predators are well recognized, but quantifying their functional impacts remains an active area of research. In this study, we examined the metabolic requirements and nutrient outputs of the estuarine crocodile population (<i>Crocodylus porosus</i>) in northern Australia over a 50-year period, during which the population increased from a few thousand to over 100 000 individuals. Bioenergetic modelling showed that during this period, the crocodile population's annual prey consumption increased from <20 kg km<sup>-2</sup> in 1979 to approximately 180 kg km<sup>-2</sup> in 2019. Further, the prey consumption increase was accompanied by a significant dietary shift from predominantly aquatic prey (approx. 65% in 1979) to a terrestrial-based diet (approx. 70% in 2019). A substantial portion of these terrestrial-derived nutrients was excreted into the water, significantly increasing the input rates of nitrogen (186-fold) and phosphorus (56-fold). The study shows that, despite being ectothermic, the high biomass of crocodiles within the environment generated nutrient inputs comparable to terrestrial endothermic predator populations. While crocodiles are apex predators, they are not considered to influence ecosystems in the same manner that large-bodied endothermic predators do. However, in the oligotrophic freshwater systems of northern Australia, the large volume of crocodile biomass is likely to impact the ecosystem through top-down and bottom-up processes.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2042","pages":"20242260"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2260","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ecological roles of large predators are well recognized, but quantifying their functional impacts remains an active area of research. In this study, we examined the metabolic requirements and nutrient outputs of the estuarine crocodile population (Crocodylus porosus) in northern Australia over a 50-year period, during which the population increased from a few thousand to over 100 000 individuals. Bioenergetic modelling showed that during this period, the crocodile population's annual prey consumption increased from <20 kg km-2 in 1979 to approximately 180 kg km-2 in 2019. Further, the prey consumption increase was accompanied by a significant dietary shift from predominantly aquatic prey (approx. 65% in 1979) to a terrestrial-based diet (approx. 70% in 2019). A substantial portion of these terrestrial-derived nutrients was excreted into the water, significantly increasing the input rates of nitrogen (186-fold) and phosphorus (56-fold). The study shows that, despite being ectothermic, the high biomass of crocodiles within the environment generated nutrient inputs comparable to terrestrial endothermic predator populations. While crocodiles are apex predators, they are not considered to influence ecosystems in the same manner that large-bodied endothermic predators do. However, in the oligotrophic freshwater systems of northern Australia, the large volume of crocodile biomass is likely to impact the ecosystem through top-down and bottom-up processes.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.