Miro1 expression alters global gene expression, ERK1/2 phosphorylation, oxidation and cell cycle progression.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Journal of cell science Pub Date : 2025-05-01 Epub Date: 2025-04-02 DOI:10.1242/jcs.263554
Nathaniel Shannon, Cory Raymond, Chloe Palmer, Silver Homa, Marcelo Bonini, David Seward, Brian Cunniff
{"title":"Miro1 expression alters global gene expression, ERK1/2 phosphorylation, oxidation and cell cycle progression.","authors":"Nathaniel Shannon, Cory Raymond, Chloe Palmer, Silver Homa, Marcelo Bonini, David Seward, Brian Cunniff","doi":"10.1242/jcs.263554","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial positioning supports localized energy and signaling requirements. Miro1 is necessary for attachment of mitochondria to microtubule motor proteins for trafficking. When Miro1 is deleted (Miro1-/-) from mouse embryonic fibroblasts (MEFs), mitochondria become sequestered to the perinuclear space, disrupting subcellular signaling gradients. Here, we show that Miro1-/- MEFs grow slower than Miro1+/+ and Miro1-/- MEFs stably re-expressing a Myc-Miro1 plasmid. Miro1-/- MEFs have a decreased percentage of cells in G1 and increased percentage of cells in S phase. We conducted the first ever RNA sequencing experiment dependent upon Miro1 expression and found differentially expressed genes related to MAPK signaling, cell proliferation and migration. ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) phosphorylation is elevated both spatially and temporally following serum stimulation in Miro1-/- MEFs, whereas the expression levels and oxidation of the dual specificity phosphatases (DUSP1-DUSP6) is unchanged. Finally, we found the oxidation status of ERK1/2 is increased in Miro1-/- MEFs compared to that seen in Miro1+/+ and Myc-Miro1 MEFs. These results highlight transcriptional control based off Miro1 expression and demonstrate the dynamic regulation of ERK1/2 upon deletion of Miro1 which might support the observed cell cycle and proliferation defects.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263554","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial positioning supports localized energy and signaling requirements. Miro1 is necessary for attachment of mitochondria to microtubule motor proteins for trafficking. When Miro1 is deleted (Miro1-/-) from mouse embryonic fibroblasts (MEFs), mitochondria become sequestered to the perinuclear space, disrupting subcellular signaling gradients. Here, we show that Miro1-/- MEFs grow slower than Miro1+/+ and Miro1-/- MEFs stably re-expressing a Myc-Miro1 plasmid. Miro1-/- MEFs have a decreased percentage of cells in G1 and increased percentage of cells in S phase. We conducted the first ever RNA sequencing experiment dependent upon Miro1 expression and found differentially expressed genes related to MAPK signaling, cell proliferation and migration. ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) phosphorylation is elevated both spatially and temporally following serum stimulation in Miro1-/- MEFs, whereas the expression levels and oxidation of the dual specificity phosphatases (DUSP1-DUSP6) is unchanged. Finally, we found the oxidation status of ERK1/2 is increased in Miro1-/- MEFs compared to that seen in Miro1+/+ and Myc-Miro1 MEFs. These results highlight transcriptional control based off Miro1 expression and demonstrate the dynamic regulation of ERK1/2 upon deletion of Miro1 which might support the observed cell cycle and proliferation defects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信