Macrophage-Specific Progranulin Deficiency Prevents Diet-Induced Obesity through the Inhibition of Hypothalamic and Adipose Tissue Inflammation.

IF 6.8 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Chan Hee Lee, Chae Beom Park, Hyun-Kyong Kim, Won Hee Jang, Se Hee Min, Jae Bum Kim, Min-Seon Kim
{"title":"Macrophage-Specific Progranulin Deficiency Prevents Diet-Induced Obesity through the Inhibition of Hypothalamic and Adipose Tissue Inflammation.","authors":"Chan Hee Lee, Chae Beom Park, Hyun-Kyong Kim, Won Hee Jang, Se Hee Min, Jae Bum Kim, Min-Seon Kim","doi":"10.4093/dmj.2024.0486","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic low-grade inflammation in multiple metabolic organs contributes to the development of insulin resistance induced by obesity. Progranulin (PGRN) is an evolutionarily-conserved secretory protein implicated in immune modulation. The generalized deletion of the PGRN-encoded Grn gene improves insulin resistance and glucose intolerance in obese mice fed a high-fat diet (HFD). However, it remains unclear which cells or organs are responsible for the beneficial metabolic effect of Grn depletion.</p><p><strong>Methods: </strong>Considering the critical role of macrophages in HFD-induced obesity and inflammation, we generated mice with a macrophage-specific Grn depletion (Grn-MΦKO mice) by mating lysozyme M (LysM)-Cre and Grn-floxed mice. Body weight, food intake, energy expenditure, and glucose and insulin tolerance were compared between Grn-MΦKO mice and their wildtype (WT) controls under normal chow diet (NCD)- or HFD-fed conditions. We also examined macrophage activation and inflammation- related gene expression in the visceral adipose tissue and hypothalamus along with insulin and leptin signaling.</p><p><strong>Results: </strong>Grn-MΦKO mice showed no alteration in metabolic phenotypes under NCD-fed conditions. However, upon HFD feeding, these mice exhibited less weight gain and improved glucose and insulin tolerance compared to WT mice. Moreover, HFD-induced macrophage activation and proinflammatory cytokine expression were significantly reduced in both the adipose tissue and hypothalamus of Grn-MΦKO mice, while HFD-induced impairments in leptin and insulin signaling showed improvement.</p><p><strong>Conclusion: </strong>Macrophage-derived PGRN and possibly other Grn products play a critical role in the development of HFD-induced obesity, tissue inflammation, and impaired hormonal signaling in both central and peripheral metabolic organs.</p>","PeriodicalId":11153,"journal":{"name":"Diabetes & Metabolism Journal","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolism Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4093/dmj.2024.0486","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic low-grade inflammation in multiple metabolic organs contributes to the development of insulin resistance induced by obesity. Progranulin (PGRN) is an evolutionarily-conserved secretory protein implicated in immune modulation. The generalized deletion of the PGRN-encoded Grn gene improves insulin resistance and glucose intolerance in obese mice fed a high-fat diet (HFD). However, it remains unclear which cells or organs are responsible for the beneficial metabolic effect of Grn depletion.

Methods: Considering the critical role of macrophages in HFD-induced obesity and inflammation, we generated mice with a macrophage-specific Grn depletion (Grn-MΦKO mice) by mating lysozyme M (LysM)-Cre and Grn-floxed mice. Body weight, food intake, energy expenditure, and glucose and insulin tolerance were compared between Grn-MΦKO mice and their wildtype (WT) controls under normal chow diet (NCD)- or HFD-fed conditions. We also examined macrophage activation and inflammation- related gene expression in the visceral adipose tissue and hypothalamus along with insulin and leptin signaling.

Results: Grn-MΦKO mice showed no alteration in metabolic phenotypes under NCD-fed conditions. However, upon HFD feeding, these mice exhibited less weight gain and improved glucose and insulin tolerance compared to WT mice. Moreover, HFD-induced macrophage activation and proinflammatory cytokine expression were significantly reduced in both the adipose tissue and hypothalamus of Grn-MΦKO mice, while HFD-induced impairments in leptin and insulin signaling showed improvement.

Conclusion: Macrophage-derived PGRN and possibly other Grn products play a critical role in the development of HFD-induced obesity, tissue inflammation, and impaired hormonal signaling in both central and peripheral metabolic organs.

巨噬细胞特异性 Progranulin 缺乏症可通过抑制下丘脑和脂肪组织炎症预防饮食诱发肥胖症
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetes & Metabolism Journal
Diabetes & Metabolism Journal Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
10.40
自引率
6.80%
发文量
92
审稿时长
52 weeks
期刊介绍: The aims of the Diabetes & Metabolism Journal are to contribute to the cure of and education about diabetes mellitus, and the advancement of diabetology through the sharing of scientific information on the latest developments in diabetology among members of the Korean Diabetes Association and other international societies. The Journal publishes articles on basic and clinical studies, focusing on areas such as metabolism, epidemiology, pathogenesis, complications, and treatments relevant to diabetes mellitus. It also publishes articles covering obesity and cardiovascular disease. Articles on translational research and timely issues including ubiquitous care or new technology in the management of diabetes and metabolic disorders are welcome. In addition, genome research, meta-analysis, and randomized controlled studies are welcome for publication. The editorial board invites articles from international research or clinical study groups. Publication is determined by the editors and peer reviewers, who are experts in their specific fields of diabetology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信