The origin of localized patterns with a spatiotemporal oscillatory background state.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0249873
Zhi-Chao Xue, Li Li
{"title":"The origin of localized patterns with a spatiotemporal oscillatory background state.","authors":"Zhi-Chao Xue, Li Li","doi":"10.1063/5.0249873","DOIUrl":null,"url":null,"abstract":"<p><p>The localized patterns observed with a spatiotemporal oscillatory background in the experiment are believed to emerge due to the bistability of supercritical Turing-Hopf modes. However, the branching origin of these patterns remains unclear. In this paper, we explore the formation of local patterns near the subcritical Turing-Hopf bifurcation point using the Gray-Scott model as an example. By employing the multiple scales analysis method, we derive the amplitude equation coupling both time and space, demonstrating that this special localized pattern can persist even under a subcritical bifurcation. Through numerical continuation and bifurcation analysis, we reveal that the patterns originate from a new branch on the homoclinic snaking. Our findings provide new insights into the formation of complex spatiotemporal patterns and offer a reasonable explanation for the origin of oscillatory localized patterns from the perspective of higher-order bifurcations.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0249873","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The localized patterns observed with a spatiotemporal oscillatory background in the experiment are believed to emerge due to the bistability of supercritical Turing-Hopf modes. However, the branching origin of these patterns remains unclear. In this paper, we explore the formation of local patterns near the subcritical Turing-Hopf bifurcation point using the Gray-Scott model as an example. By employing the multiple scales analysis method, we derive the amplitude equation coupling both time and space, demonstrating that this special localized pattern can persist even under a subcritical bifurcation. Through numerical continuation and bifurcation analysis, we reveal that the patterns originate from a new branch on the homoclinic snaking. Our findings provide new insights into the formation of complex spatiotemporal patterns and offer a reasonable explanation for the origin of oscillatory localized patterns from the perspective of higher-order bifurcations.

实验中观察到的具有时空振荡背景的局部模式被认为是由于超临界图灵-霍普夫模式的双稳态性而产生的。然而,这些模式的分支起源仍不清楚。本文以 Gray-Scott 模型为例,探讨了亚临界 Turing-Hopf 分叉点附近局部模式的形成。通过采用多尺度分析方法,我们推导出了时间和空间耦合的振幅方程,证明了这种特殊的局部模式即使在亚临界分岔下也能持续存在。通过数值延续和分岔分析,我们揭示了这种模式源于同线性蛇形上的一个新分支。我们的发现为复杂时空模式的形成提供了新的见解,并从高阶分岔的角度为振荡局部模式的起源提供了合理的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信