Inertial dynamics of run-and-tumble particle.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0250965
Debraj Dutta, Anupam Kundu, Urna Basu
{"title":"Inertial dynamics of run-and-tumble particle.","authors":"Debraj Dutta, Anupam Kundu, Urna Basu","doi":"10.1063/5.0250965","DOIUrl":null,"url":null,"abstract":"<p><p>We study the dynamics of a single inertial run-and-tumble particle on a straight line. The motion of this particle is characterized by two intrinsic timescales, namely, an inertial and an active timescale. We show that interplay of these two times-scales leads to the emergence of four distinct regimes, characterized by different dynamical behavior of mean-squared displacement and survival probability. We analytically compute the position distributions in these regimes when the two timescales are well separated. We show that in the large-time limit, the distribution has a large deviation form and compute the corresponding large deviation function analytically. We also find the persistence exponents in the different regimes theoretically. All our results are supported with numerical simulations.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0250965","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dynamics of a single inertial run-and-tumble particle on a straight line. The motion of this particle is characterized by two intrinsic timescales, namely, an inertial and an active timescale. We show that interplay of these two times-scales leads to the emergence of four distinct regimes, characterized by different dynamical behavior of mean-squared displacement and survival probability. We analytically compute the position distributions in these regimes when the two timescales are well separated. We show that in the large-time limit, the distribution has a large deviation form and compute the corresponding large deviation function analytically. We also find the persistence exponents in the different regimes theoretically. All our results are supported with numerical simulations.

滚落粒子的惯性动力学。
我们研究了单个惯性粒子在直线上的运动动力学。该粒子的运动有两个固有时标,即惯性时标和活动时标。我们表明,这两个时间尺度的相互作用导致了四种不同制度的出现,其特征是均方位移和生存概率的不同动态行为。当两个时间尺度很好地分离时,我们解析地计算了这些制度中的位置分布。证明了在大时间极限下,分布具有大偏差形式,并解析计算了相应的大偏差函数。我们还从理论上找到了不同制度下的持久性指数。所有的结果都得到了数值模拟的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信