Amplitude-sensitive permutation entropy: A novel complexity measure incorporating amplitude variation for physiological time series.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0245842
Jun Huang, Huijuan Dong, Na Li, Yizhou Li, Jing Zhu, Xiaowei Li, Bin Hu
{"title":"Amplitude-sensitive permutation entropy: A novel complexity measure incorporating amplitude variation for physiological time series.","authors":"Jun Huang, Huijuan Dong, Na Li, Yizhou Li, Jing Zhu, Xiaowei Li, Bin Hu","doi":"10.1063/5.0245842","DOIUrl":null,"url":null,"abstract":"<p><p>Physiological time series, such as electrocardiogram (ECG) and electroencephalogram (EEG) data, are instrumental in capturing the critical dynamics of biological systems, including cardiovascular behavior and neural activity. The traditional permutation entropy (PE) methods effectively analyze the complexity of such signals but often overlook amplitude variations, which encode essential information about physiological states and pathological conditions. This paper introduces amplitude-sensitive permutation entropy (ASPE), a novel method that enhances PE by integrating amplitude information through the coefficient of variation as a weighting factor. Unlike the existing approaches that may overemphasize or underutilize amplitude changes, ASPE's balanced weighting strategy captures both the average level and dispersion of data, preserving the overall signal complexity. To validate ASPE's effectiveness, we conducted simulation experiments and applied them to two real-world datasets: an EEG dataset of epileptic seizures and an ECG dataset of arrhythmias. In simulations, ASPE demonstrated superior sensitivity to amplitude changes, outperforming the five existing PE methods in identifying dynamic variations accurately. In the physiological datasets, ASPE distinguished disease states more effectively, accurately identifying seizure phases and arrhythmic patterns. These results highlight ASPE's potential as a robust tool for analyzing physiological data with complex amplitude dynamics, offering a more comprehensive assessment of signal behavior and disease states than the current methods.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0245842","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Physiological time series, such as electrocardiogram (ECG) and electroencephalogram (EEG) data, are instrumental in capturing the critical dynamics of biological systems, including cardiovascular behavior and neural activity. The traditional permutation entropy (PE) methods effectively analyze the complexity of such signals but often overlook amplitude variations, which encode essential information about physiological states and pathological conditions. This paper introduces amplitude-sensitive permutation entropy (ASPE), a novel method that enhances PE by integrating amplitude information through the coefficient of variation as a weighting factor. Unlike the existing approaches that may overemphasize or underutilize amplitude changes, ASPE's balanced weighting strategy captures both the average level and dispersion of data, preserving the overall signal complexity. To validate ASPE's effectiveness, we conducted simulation experiments and applied them to two real-world datasets: an EEG dataset of epileptic seizures and an ECG dataset of arrhythmias. In simulations, ASPE demonstrated superior sensitivity to amplitude changes, outperforming the five existing PE methods in identifying dynamic variations accurately. In the physiological datasets, ASPE distinguished disease states more effectively, accurately identifying seizure phases and arrhythmic patterns. These results highlight ASPE's potential as a robust tool for analyzing physiological data with complex amplitude dynamics, offering a more comprehensive assessment of signal behavior and disease states than the current methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信