{"title":"Dissecting genetic regulation of metabolic coordination.","authors":"Emily C Hector, Daiwei Zhang, Leqi Tian, Junning Feng, Xianyong Yin, Tianyi Xu, Markku Laakso, Yun Bai, Jiashun Xiao, Jian Kang, Tianwei Yu","doi":"10.1093/bib/bbaf095","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding genetic regulation of metabolism is critical for gaining insights into the causes of metabolic diseases. Traditional metabolome-based genome-wide association studies (mGWAS) focus on static associations between single nucleotide polymorphisms (SNPs) and metabolite levels, overlooking the changing relationships caused by genotypes within the metabolic network. Notably, some metabolites exhibit changes in correlation patterns with other metabolites under certain physiological conditions while maintaining their overall abundance level. In this manuscript, we develop Metabolic Differential-coordination GWAS (mdGWAS), an innovative framework that detects SNPs associated with the changing correlation patterns between metabolites and metabolic pathways. This approach transcends and complements conventional mean-based analyses by identifying latent regulatory factors that govern the system-level metabolic coordination. Through comprehensive simulation studies, mdGWAS demonstrated robust performance in detecting SNP-metabolite-metabolite associations. Applying mdGWAS to genotyping and mass spectrometry (MS)-based metabolomics data of the METabolic Syndrome In Men (METSIM) Study revealed novel SNPs and genes potentially involved in the regulation of the coordination between metabolic pathways.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf095","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding genetic regulation of metabolism is critical for gaining insights into the causes of metabolic diseases. Traditional metabolome-based genome-wide association studies (mGWAS) focus on static associations between single nucleotide polymorphisms (SNPs) and metabolite levels, overlooking the changing relationships caused by genotypes within the metabolic network. Notably, some metabolites exhibit changes in correlation patterns with other metabolites under certain physiological conditions while maintaining their overall abundance level. In this manuscript, we develop Metabolic Differential-coordination GWAS (mdGWAS), an innovative framework that detects SNPs associated with the changing correlation patterns between metabolites and metabolic pathways. This approach transcends and complements conventional mean-based analyses by identifying latent regulatory factors that govern the system-level metabolic coordination. Through comprehensive simulation studies, mdGWAS demonstrated robust performance in detecting SNP-metabolite-metabolite associations. Applying mdGWAS to genotyping and mass spectrometry (MS)-based metabolomics data of the METabolic Syndrome In Men (METSIM) Study revealed novel SNPs and genes potentially involved in the regulation of the coordination between metabolic pathways.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.