Sophie Lipshutz, Yoontae Kim, Micaila Curtis, Leanne Friedrich, Stella Alimperti
{"title":"Development of multiparametric bioprinting method for generation of 3D printed cell-laden structures.","authors":"Sophie Lipshutz, Yoontae Kim, Micaila Curtis, Leanne Friedrich, Stella Alimperti","doi":"10.1002/btpr.70016","DOIUrl":null,"url":null,"abstract":"<p><p>The organ transplantation field requires new approaches for replacing and regenerating tissues due to the lack of adequate transplant methods. Three-dimensional (3D) extrusion-based bioprinting is a rapid prototyping approach that can engineer 3D scaffolds for tissue regeneration applications. In this process, 3D printed cell-based constructs, consisting of biomaterials, growth factors, and cells, are formed by the extrusion of bioinks from nozzles. However, extrusion applies shear stresses to cells, often leading to cellular damage or membrane rupture. To address this limitation, herein, we developed and optimized a 3D bioprinting approach by evaluating the effect of key extrusion-based 3D bioprinting parameters-bioink viscosity, nozzle size, shape, and printing speed-on cell viability. Our results revealed that cells printed in higher-viscosity bioinks, with smaller, cylindrical nozzles, exhibited lower viability due to their exposure to high shear stresses. Translational flow speed had a cell-dependent impact, as different cell types have different sensitivities to the magnitude and duration of shear stress inside the nozzle. Overall, evaluating these parameters could facilitate the development of 3D high-resolution bioprinted constructs for tissue regeneration applications, offering a more efficient alternative to traditional fabrication methods, which are often labor intensive, expensive, and repetitive.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70016"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The organ transplantation field requires new approaches for replacing and regenerating tissues due to the lack of adequate transplant methods. Three-dimensional (3D) extrusion-based bioprinting is a rapid prototyping approach that can engineer 3D scaffolds for tissue regeneration applications. In this process, 3D printed cell-based constructs, consisting of biomaterials, growth factors, and cells, are formed by the extrusion of bioinks from nozzles. However, extrusion applies shear stresses to cells, often leading to cellular damage or membrane rupture. To address this limitation, herein, we developed and optimized a 3D bioprinting approach by evaluating the effect of key extrusion-based 3D bioprinting parameters-bioink viscosity, nozzle size, shape, and printing speed-on cell viability. Our results revealed that cells printed in higher-viscosity bioinks, with smaller, cylindrical nozzles, exhibited lower viability due to their exposure to high shear stresses. Translational flow speed had a cell-dependent impact, as different cell types have different sensitivities to the magnitude and duration of shear stress inside the nozzle. Overall, evaluating these parameters could facilitate the development of 3D high-resolution bioprinted constructs for tissue regeneration applications, offering a more efficient alternative to traditional fabrication methods, which are often labor intensive, expensive, and repetitive.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.