Zhenqin Li, Long Cheng, Sitong Li, Guangcai Liu, Sijia Liu, Duo Xu, Rongchao Yang, Feng Feng, Junning Wang, Chao Zheng
{"title":"Physiological, ionomic, transcriptomic and metabolomic analyses reveal molecular mechanisms of root adaption to salt stress in water spinach.","authors":"Zhenqin Li, Long Cheng, Sitong Li, Guangcai Liu, Sijia Liu, Duo Xu, Rongchao Yang, Feng Feng, Junning Wang, Chao Zheng","doi":"10.1186/s12864-025-11409-z","DOIUrl":null,"url":null,"abstract":"<p><p>Water spinach (Ipomoea aquatica Forsk.) is an important leaf vegetable affected by salt stress, however, little is known about its salt adaption mechanism. Here, we integrated physiomics, ionomics, transcriptomics, and metabolomics to analyze the root adaptation response of two water spinach varieties, BG (salt-tolerant) and MF (salt-sensitive), at 150 mM NaCl. The results showed that compared with MF, BG significantly reduced the content of malondialdehyde (MDA) and H<sub>2</sub>O<sub>2</sub>, and increased catalase (CAT) activity and proline content. Ionome analysis demonstrated that BG significantly reduced Na<sup>+</sup> accumulation and increased K<sup>+</sup> level to reduce the toxicity of Na<sup>+</sup>, compared to MF. Weighted gene co-expression network analysis (WGCNA) revealed that key transcription factors such as HSFA4A, bHLH093, and IDD7, which were only up-regulated in BG. Multi-omics revealed that BG reprogrammed key pathways: starch and sucrose metabolism, as well as galactose metabolism, leading to decreased amylose production and increased sucrose and galactose levels, helping to maintain cellular osmotic balance in response to salt stress. These findings provide insight into transcriptional regulation in response to salt stress, which could advance the genetic enhancement of water spinach.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"231"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11409-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Water spinach (Ipomoea aquatica Forsk.) is an important leaf vegetable affected by salt stress, however, little is known about its salt adaption mechanism. Here, we integrated physiomics, ionomics, transcriptomics, and metabolomics to analyze the root adaptation response of two water spinach varieties, BG (salt-tolerant) and MF (salt-sensitive), at 150 mM NaCl. The results showed that compared with MF, BG significantly reduced the content of malondialdehyde (MDA) and H2O2, and increased catalase (CAT) activity and proline content. Ionome analysis demonstrated that BG significantly reduced Na+ accumulation and increased K+ level to reduce the toxicity of Na+, compared to MF. Weighted gene co-expression network analysis (WGCNA) revealed that key transcription factors such as HSFA4A, bHLH093, and IDD7, which were only up-regulated in BG. Multi-omics revealed that BG reprogrammed key pathways: starch and sucrose metabolism, as well as galactose metabolism, leading to decreased amylose production and increased sucrose and galactose levels, helping to maintain cellular osmotic balance in response to salt stress. These findings provide insight into transcriptional regulation in response to salt stress, which could advance the genetic enhancement of water spinach.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.