Targeting NAD + biosynthesis suppresses TGF-β1/Smads/RAB26 axis and potentiates cisplatin cytotoxicity in non-small cell lung cancer brain metastasis.

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Liyun Zhou, Zhiying Li, Shengli Zhou, Bin Wang, Zhen Liang, Sen Hu, Hang Zhang, Lin Duan, Dongxu Zhao, Luyao Cheng, Hang Ren, Hiroaki Wakimoto, Ming Li
{"title":"Targeting NAD + biosynthesis suppresses TGF-β1/Smads/RAB26 axis and potentiates cisplatin cytotoxicity in non-small cell lung cancer brain metastasis.","authors":"Liyun Zhou, Zhiying Li, Shengli Zhou, Bin Wang, Zhen Liang, Sen Hu, Hang Zhang, Lin Duan, Dongxu Zhao, Luyao Cheng, Hang Ren, Hiroaki Wakimoto, Ming Li","doi":"10.1186/s40478-025-01967-4","DOIUrl":null,"url":null,"abstract":"<p><p>Nicotinamide adenine dinucleotide (NAD<sup>+</sup>) plays an important role in tumor progression, but its role in non-small cell lung cancer with brain metastasis (NSCLC BM) remains unclear. Herein, we investigated NAD<sup>+</sup> biosynthesis targeting as a new therapeutic strategy for NSCLC BM. Therapeutic activity of nicotinamide phosphoribosyl transferase (NAMPT) inhibitors was evaluated in mouse models of NSCLC BM and using various assays such as NAD<sup>+</sup> quantitation, cell viability, and apoptosis assays. To explore impact on downstream signaling, RNA sequencing was used in NAMPT inhibitor-treated and control cells, followed by validation with genetic knockdown, western blot and qRT-PCR. Expression of NAMPT and downstream proteins in human NSCLC BM and its association with patient prognosis were examined. Finally, combination of NAMPT inhibitor and cisplatin was tested in vivo. Systemic treatment with NAMPT inhibitors demonstrated intracranial activity in an NSCLC BM model. NAMPT inhibitors decreased cellular NAD levels and suppressed proliferation and invasion, and induced apoptosis in NSCLC cells. Supplementation with NAD<sup>+</sup> precursor NMN rescued these NAMPT inhibitor effects. Mechanistically, disruption of NAMPT-mediated NAD<sup>+</sup> biosynthesis suppressed TGF-β1/Smads/RAB26 signaling, leading to inhibition of NSCLC cells. Expression of NAMPT/TGF-β1/Smads/RAB26 axis proteins was upregulated in NSCLC BM tissues and correlated with poor prognosis. Combining NAMPT inhibitors with cisplatin further extended the survival of NSCLC BM-bearing mice. Targeting NAD<sup>+</sup> biosynthesis provides a new therapeutic strategy for NSCLC BM and can be effectively combined with cisplatin. Our studies identified the TGF-β1/Smads/RAB26 signaling downstream of NAMPT, which was targeted by NAMPT inhibition to mediate anti-cancer effects.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"56"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895195/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01967-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nicotinamide adenine dinucleotide (NAD+) plays an important role in tumor progression, but its role in non-small cell lung cancer with brain metastasis (NSCLC BM) remains unclear. Herein, we investigated NAD+ biosynthesis targeting as a new therapeutic strategy for NSCLC BM. Therapeutic activity of nicotinamide phosphoribosyl transferase (NAMPT) inhibitors was evaluated in mouse models of NSCLC BM and using various assays such as NAD+ quantitation, cell viability, and apoptosis assays. To explore impact on downstream signaling, RNA sequencing was used in NAMPT inhibitor-treated and control cells, followed by validation with genetic knockdown, western blot and qRT-PCR. Expression of NAMPT and downstream proteins in human NSCLC BM and its association with patient prognosis were examined. Finally, combination of NAMPT inhibitor and cisplatin was tested in vivo. Systemic treatment with NAMPT inhibitors demonstrated intracranial activity in an NSCLC BM model. NAMPT inhibitors decreased cellular NAD levels and suppressed proliferation and invasion, and induced apoptosis in NSCLC cells. Supplementation with NAD+ precursor NMN rescued these NAMPT inhibitor effects. Mechanistically, disruption of NAMPT-mediated NAD+ biosynthesis suppressed TGF-β1/Smads/RAB26 signaling, leading to inhibition of NSCLC cells. Expression of NAMPT/TGF-β1/Smads/RAB26 axis proteins was upregulated in NSCLC BM tissues and correlated with poor prognosis. Combining NAMPT inhibitors with cisplatin further extended the survival of NSCLC BM-bearing mice. Targeting NAD+ biosynthesis provides a new therapeutic strategy for NSCLC BM and can be effectively combined with cisplatin. Our studies identified the TGF-β1/Smads/RAB26 signaling downstream of NAMPT, which was targeted by NAMPT inhibition to mediate anti-cancer effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信