7-(4-Chlorophenyl)-1-hydroxy-5-methylpyrido[3,4-d]pyridazin-4(3H)-one: synthesis, solvatomorphism, in vitro anti-inflammatory and cytotoxic activity studies and in silico analysis.
Anna Wójcicka, Iwona Bryndal, Magdalena Krupińska, Aleksandra Wolska, Jakub Milewski, Anna Pyra, Lilianna Becan, Marcin Mączyński, Agnieszka Matera-Witkiewicz
{"title":"7-(4-Chlorophenyl)-1-hydroxy-5-methylpyrido[3,4-d]pyridazin-4(3H)-one: synthesis, solvatomorphism, in vitro anti-inflammatory and cytotoxic activity studies and in silico analysis.","authors":"Anna Wójcicka, Iwona Bryndal, Magdalena Krupińska, Aleksandra Wolska, Jakub Milewski, Anna Pyra, Lilianna Becan, Marcin Mączyński, Agnieszka Matera-Witkiewicz","doi":"10.1107/S2053229625001858","DOIUrl":null,"url":null,"abstract":"<p><p>The newly obtained compound 7-(4-chlorophenyl)-1-hydroxy-5-methylpyrido[3,4-d]pyridazin-4(3H)-one (CPM) was crystallized as two new variable solvates, namely, the dimethyl sulfoxide monosolvate, C<sub>14</sub>H<sub>10</sub>ClN<sub>3</sub>O<sub>2</sub>·C<sub>2</sub>H<sub>6</sub>SO (I), and the sesquisolvate, C<sub>14</sub>H<sub>10</sub>ClN<sub>3</sub>O<sub>2</sub>·1.5C<sub>2</sub>H<sub>6</sub>SO (II), and their structures were confirmed by single-crystal X-ray diffraction analysis. In previous work, 1-hydroxy-5-methyl-7-phenylpyrido[3,4-d]pyridazin-4(3H)-one (PM) was found to display anticancer activity. In the next step of our studies, we synthesized a new derivative of PM, introducing a Cl atom into the PM structure, obtaining CPM, which showed not only anticancer but also anti-inflammatory activity. CPM and the new semi-products of each step of the synthesis were examined by <sup>1</sup>H NMR, <sup>13</sup>C NMR and FT-IR spectroscopic analyses, and mass spectrometry. CPM forms (I) and (II) crystallize in the triclinic P1 and monoclinic C2/c space groups, respectively, and differ in the stoichiometry of the CPM and DMSO molecules in the crystal lattice, being 1:1 and 1:1.5 for (I) and (II), respectively. A powder X-ray diffraction analysis was performed only for solvate (I) due to the lack of stability of solvate (II). The potential cytotoxicity of CPM was evaluated against the normal cell lines L929 and RPTEC, as well as the cancer cell lines A172, AGS, CACO-2 and HepG2. The anti-inflammatory activity of CPM was also evaluated using colorimetric assay for the inhibition of COX-1 and COX-2. The same biological tests were carried out for PM to compare the activities of both compounds. The biological studies revealed that CPM does not exhibit more activity than PM. Moreover, in silico analysis of the bioavailability and molecular docking were performed.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"198-211"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section C Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2053229625001858","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The newly obtained compound 7-(4-chlorophenyl)-1-hydroxy-5-methylpyrido[3,4-d]pyridazin-4(3H)-one (CPM) was crystallized as two new variable solvates, namely, the dimethyl sulfoxide monosolvate, C14H10ClN3O2·C2H6SO (I), and the sesquisolvate, C14H10ClN3O2·1.5C2H6SO (II), and their structures were confirmed by single-crystal X-ray diffraction analysis. In previous work, 1-hydroxy-5-methyl-7-phenylpyrido[3,4-d]pyridazin-4(3H)-one (PM) was found to display anticancer activity. In the next step of our studies, we synthesized a new derivative of PM, introducing a Cl atom into the PM structure, obtaining CPM, which showed not only anticancer but also anti-inflammatory activity. CPM and the new semi-products of each step of the synthesis were examined by 1H NMR, 13C NMR and FT-IR spectroscopic analyses, and mass spectrometry. CPM forms (I) and (II) crystallize in the triclinic P1 and monoclinic C2/c space groups, respectively, and differ in the stoichiometry of the CPM and DMSO molecules in the crystal lattice, being 1:1 and 1:1.5 for (I) and (II), respectively. A powder X-ray diffraction analysis was performed only for solvate (I) due to the lack of stability of solvate (II). The potential cytotoxicity of CPM was evaluated against the normal cell lines L929 and RPTEC, as well as the cancer cell lines A172, AGS, CACO-2 and HepG2. The anti-inflammatory activity of CPM was also evaluated using colorimetric assay for the inhibition of COX-1 and COX-2. The same biological tests were carried out for PM to compare the activities of both compounds. The biological studies revealed that CPM does not exhibit more activity than PM. Moreover, in silico analysis of the bioavailability and molecular docking were performed.
期刊介绍:
Acta Crystallographica Section C: Structural Chemistry is continuing its transition to a journal that publishes exciting science with structural content, in particular, important results relating to the chemical sciences. Section C is the journal of choice for the rapid publication of articles that highlight interesting research facilitated by the determination, calculation or analysis of structures of any type, other than macromolecular structures. Articles that emphasize the science and the outcomes that were enabled by the study are particularly welcomed. Authors are encouraged to include mainstream science in their papers, thereby producing manuscripts that are substantial scientific well-rounded contributions that appeal to a broad community of readers and increase the profile of the authors.