{"title":"GEMDiff: a diffusion workflow bridges between normal and tumor gene expression states: a breast cancer case study.","authors":"Xusheng Ai, Melissa C Smith, F Alex Feltus","doi":"10.1093/bib/bbaf093","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains a significant global health challenge due to its complexity, which arises from multiple genetic and epigenetic mutations that originate in normal breast tissue. Traditional machine learning models often fall short in addressing the intricate gene interactions that complicate drug design and treatment strategies. In contrast, our study introduces GEMDiff, a novel computational workflow leveraging a diffusion model to bridge the gene expression states between normal and tumor conditions. GEMDiff augments RNAseq data and simulates perturbation transformations between normal and tumor gene states, enhancing biomarker identification. GEMDiff can handle large-scale gene expression data without succumbing to the scalability and stability issues that plague other generative models. By avoiding the need for task-specific hyper-parameter tuning and specific loss functions, GEMDiff can be generalized across various tasks, making it a robust tool for gene expression analysis. The model's ability to augment RNA-seq data and simulate gene perturbations provides a valuable tool for researchers. This capability can be used to generate synthetic data for training other machine learning models, thereby addressing the issue of limited biological data and enhancing the performance of predictive models. The effectiveness of GEMDiff is demonstrated through a case study using breast mRNA gene expression data, identifying 307 core genes involved in the transition from a breast tumor to a normal gene expression state. GEMDiff is open source and available at https://github.com/xai990/GEMDiff.git under the MIT license.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf093","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer remains a significant global health challenge due to its complexity, which arises from multiple genetic and epigenetic mutations that originate in normal breast tissue. Traditional machine learning models often fall short in addressing the intricate gene interactions that complicate drug design and treatment strategies. In contrast, our study introduces GEMDiff, a novel computational workflow leveraging a diffusion model to bridge the gene expression states between normal and tumor conditions. GEMDiff augments RNAseq data and simulates perturbation transformations between normal and tumor gene states, enhancing biomarker identification. GEMDiff can handle large-scale gene expression data without succumbing to the scalability and stability issues that plague other generative models. By avoiding the need for task-specific hyper-parameter tuning and specific loss functions, GEMDiff can be generalized across various tasks, making it a robust tool for gene expression analysis. The model's ability to augment RNA-seq data and simulate gene perturbations provides a valuable tool for researchers. This capability can be used to generate synthetic data for training other machine learning models, thereby addressing the issue of limited biological data and enhancing the performance of predictive models. The effectiveness of GEMDiff is demonstrated through a case study using breast mRNA gene expression data, identifying 307 core genes involved in the transition from a breast tumor to a normal gene expression state. GEMDiff is open source and available at https://github.com/xai990/GEMDiff.git under the MIT license.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.