Crystal structure, Hirshfeld surface analysis, DFT and mol­ecular docking studies of 4′-(benz­yloxy)-[1,1′-biphen­yl]-3-carb­oxy­lic acid

IF 0.5 Q4 CRYSTALLOGRAPHY
M. Harish Kumar , M. Vinduvahini , H. T. Srinivasa , H. C. Devarajegowda , B. S. Palakshamurthy
{"title":"Crystal structure, Hirshfeld surface analysis, DFT and mol­ecular docking studies of 4′-(benz­yloxy)-[1,1′-biphen­yl]-3-carb­oxy­lic acid","authors":"M. Harish Kumar ,&nbsp;M. Vinduvahini ,&nbsp;H. T. Srinivasa ,&nbsp;H. C. Devarajegowda ,&nbsp;B. S. Palakshamurthy","doi":"10.1107/S2056989025001021","DOIUrl":null,"url":null,"abstract":"<div><div>The title mol­ecule was studied by single-crystal X-ray analysis to determine its mol­ecular structure and investigate the inter­actions present. Theoretical (obtained by DFT) and experimental parameters were compared. In addition, Hirshfeld surface analysis and mol­ecular docking studies were performed for the title compound as a ligand and the SARS-Covid-2 (PDB ID:8BEC) protein, specifically the Omicron variant.</div></div><div><div>In the title compound, C<sub>20</sub>H<sub>16</sub>O<sub>3</sub>, intra­molecular C— H⋯O hydrogen bonds are observed. The dihedral angles between the aromatic benzoic acid ring and the two adjacent aromatic rings are 26.09 (4) and 69.93 (8)°, while the dihedral angle between the aromatic rings connected by the C—O—C—C [torsion angle = −175.9 (2)°] link is 89.11 (3)°. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate <em>R</em><sub>2</sub><sup>2</sup>(8) ring motifs. These dimers are further linked by C—H⋯π inter­actions, forming mol­ecular sheets along (010). The mol­ecular structure was optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level and the bond lengths, angles and torsion angles were compared with experimental values obtained by X-ray diffraction. The HOMO and LUMO were calculated, the energy gap between them being 4.3337 eV. Further, the inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis and fingerprint plots and energy frameworks were generated. The two-dimensional fingerprint plots indicate that the major contributions to the crystal packing are from H⋯H (39.7%), H⋯C (39.0%) and H⋯O (18.0%) inter­actions. The energy framework calculations reveal that the dispersion energy (<em>E</em><sub>dis</sub>= 201.0 kJ mol<sup>−1</sup>) dominates the other energies. Mol­ecular docking studies were carried out for the title compound as a ligand and the SARS-Covid-2 (PDB ID:8BEC) protein, specifically the Omicron variant, was used as a receptor giving a binding affinity of −7.6 kcal mol<sup>−1</sup>.</div></div>","PeriodicalId":7367,"journal":{"name":"Acta Crystallographica Section E: Crystallographic Communications","volume":"81 3","pages":"Pages 208-213"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891595/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section E: Crystallographic Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2056989025000477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The title mol­ecule was studied by single-crystal X-ray analysis to determine its mol­ecular structure and investigate the inter­actions present. Theoretical (obtained by DFT) and experimental parameters were compared. In addition, Hirshfeld surface analysis and mol­ecular docking studies were performed for the title compound as a ligand and the SARS-Covid-2 (PDB ID:8BEC) protein, specifically the Omicron variant.
In the title compound, C20H16O3, intra­molecular C— H⋯O hydrogen bonds are observed. The dihedral angles between the aromatic benzoic acid ring and the two adjacent aromatic rings are 26.09 (4) and 69.93 (8)°, while the dihedral angle between the aromatic rings connected by the C—O—C—C [torsion angle = −175.9 (2)°] link is 89.11 (3)°. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) ring motifs. These dimers are further linked by C—H⋯π inter­actions, forming mol­ecular sheets along (010). The mol­ecular structure was optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level and the bond lengths, angles and torsion angles were compared with experimental values obtained by X-ray diffraction. The HOMO and LUMO were calculated, the energy gap between them being 4.3337 eV. Further, the inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis and fingerprint plots and energy frameworks were generated. The two-dimensional fingerprint plots indicate that the major contributions to the crystal packing are from H⋯H (39.7%), H⋯C (39.0%) and H⋯O (18.0%) inter­actions. The energy framework calculations reveal that the dispersion energy (Edis= 201.0 kJ mol−1) dominates the other energies. Mol­ecular docking studies were carried out for the title compound as a ligand and the SARS-Covid-2 (PDB ID:8BEC) protein, specifically the Omicron variant, was used as a receptor giving a binding affinity of −7.6 kcal mol−1.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
351
审稿时长
3 weeks
期刊介绍: Acta Crystallographica Section E: Crystallographic Communications is the IUCr''s open-access structural communications journal. It provides a fast, simple and easily accessible publication mechanism for crystal structure determinations of inorganic, metal-organic and organic compounds. The electronic submission, validation, refereeing and publication facilities of the journal ensure rapid and high-quality publication of fully validated structures. The primary article category is Research Communications; these are peer-reviewed articles describing one or more structure determinations with appropriate discussion of the science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信