Yu Li, Lin-Xuan Hou, Hai-Cheng Yi, Zhu-Hong You, Shi-Hong Chen, Jia Zheng, Yang Yuan, Cheng-Gang Mi
{"title":"MOLGAECL: Molecular Graph Contrastive Learning via Graph Auto-Encoder Pretraining and Fine-Tuning Based on Drug-Drug Interaction Prediction.","authors":"Yu Li, Lin-Xuan Hou, Hai-Cheng Yi, Zhu-Hong You, Shi-Hong Chen, Jia Zheng, Yang Yuan, Cheng-Gang Mi","doi":"10.1021/acs.jcim.5c00043","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-drug interactions influence drug efficacy and patient prognosis, providing substantial research value. Some existing methods struggle with the challenges posed by sparse networks or lack the capability to integrate data from multiple sources. In this study, we propose MOLGAECL, a novel approach based on graph autoencoder pretraining and molecular graph contrastive learning. Initially, a large number of unlabeled molecular graphs are pretrained using a graph autoencoder, where graph contrastive learning is applied for more accurate representation of the drugs. Subsequently, a full-parameter fine-tuning is performed on different data sets to adapt the model for drug interaction-related prediction tasks. To assess the effectiveness of MOLGAECL, comparison experiments with state-of-the-art methods, fine-tuning comparison experiments, and parameter sensitivity analysis are conducted. Extensive experimental results demonstrate the superior performance of MOLGAECL. Specifically, MOLGAECL achieves an average increase of 6.13% in accuracy, 6.14% in AUROC, and 8.16% in AUPRC across all data sets.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3104-3116"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00043","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-drug interactions influence drug efficacy and patient prognosis, providing substantial research value. Some existing methods struggle with the challenges posed by sparse networks or lack the capability to integrate data from multiple sources. In this study, we propose MOLGAECL, a novel approach based on graph autoencoder pretraining and molecular graph contrastive learning. Initially, a large number of unlabeled molecular graphs are pretrained using a graph autoencoder, where graph contrastive learning is applied for more accurate representation of the drugs. Subsequently, a full-parameter fine-tuning is performed on different data sets to adapt the model for drug interaction-related prediction tasks. To assess the effectiveness of MOLGAECL, comparison experiments with state-of-the-art methods, fine-tuning comparison experiments, and parameter sensitivity analysis are conducted. Extensive experimental results demonstrate the superior performance of MOLGAECL. Specifically, MOLGAECL achieves an average increase of 6.13% in accuracy, 6.14% in AUROC, and 8.16% in AUPRC across all data sets.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.