Matteo Kevin Crisafio, Alessio Fontanarossa, Dario Martelli
{"title":"Nuts, bolts and spindles","authors":"Matteo Kevin Crisafio, Alessio Fontanarossa, Dario Martelli","doi":"10.1007/s11005-025-01915-2","DOIUrl":null,"url":null,"abstract":"<div><p>We construct new infinite classes of Euclidean supersymmetric solutions of four-dimensional minimal gauged supergravity comprising a <span>\\(U (1) \\times U (1)\\)</span>-invariant asymptotically locally hyperbolic metric on the total space of orbifold line bundles over a spindle (bolt). The conformal boundary is generically a squashed, branched, lens space, and the graviphoton gauge field can have either twist or anti-twist through the spindle bolt. Correspondingly, the boundary geometry inherits two types of rigid Killing spinors that we refer to as twist and anti-twist for the three-dimensional Seifert orbifolds, as well as some specific flat connections for the background gauge field, determined by the data of the spindle bolt. For all our solutions, we compute the holographically renormalized on-shell action and compare it to the expression obtained via equivariant localization, uncovering a markedly distinct behavior in the cases of twist and anti-twist. Our results provide precise predictions for the large <i>N</i> limit of the corresponding localized partition functions of three-dimensional <span>\\(\\mathcal {N}=2\\)</span> superconformal field theories placed on Seifert orbifolds.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01915-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01915-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We construct new infinite classes of Euclidean supersymmetric solutions of four-dimensional minimal gauged supergravity comprising a \(U (1) \times U (1)\)-invariant asymptotically locally hyperbolic metric on the total space of orbifold line bundles over a spindle (bolt). The conformal boundary is generically a squashed, branched, lens space, and the graviphoton gauge field can have either twist or anti-twist through the spindle bolt. Correspondingly, the boundary geometry inherits two types of rigid Killing spinors that we refer to as twist and anti-twist for the three-dimensional Seifert orbifolds, as well as some specific flat connections for the background gauge field, determined by the data of the spindle bolt. For all our solutions, we compute the holographically renormalized on-shell action and compare it to the expression obtained via equivariant localization, uncovering a markedly distinct behavior in the cases of twist and anti-twist. Our results provide precise predictions for the large N limit of the corresponding localized partition functions of three-dimensional \(\mathcal {N}=2\) superconformal field theories placed on Seifert orbifolds.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.