Spatially resolved phase reconstruction for atom interferometry

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Stefan Seckmeyer, Holger Ahlers, Jan-Niclas Kirsten-Siemß, Matthias Gersemann, Ernst M. Rasel, Sven Abend, Naceur Gaaloul
{"title":"Spatially resolved phase reconstruction for atom interferometry","authors":"Stefan Seckmeyer,&nbsp;Holger Ahlers,&nbsp;Jan-Niclas Kirsten-Siemß,&nbsp;Matthias Gersemann,&nbsp;Ernst M. Rasel,&nbsp;Sven Abend,&nbsp;Naceur Gaaloul","doi":"10.1140/epjqt/s40507-025-00337-2","DOIUrl":null,"url":null,"abstract":"<div><p>Atom interferometers are employed for numerous purposes such as inertial sensing. They measure forces by encoding their signal in phase shifts between matter waves. Signal extraction algorithms typically require the resulting interference patterns to feature a priori known spatial distributions of intensity and phase. Deviations from these assumed spatial distributions, such as those caused by inhomogeneous laser wave fronts, can lead to systematic errors. For long interrogation times, such as for space operation, these distributions can display highly complex structures. We present an extraction algorithm designed for interference patterns featuring arbitrary and unknown temporally stable spatial phase profiles utilizing Principal Component Analysis. It characterizes complex phase profiles and thereby turns effects into a measured quantity which caused systematic errors in previous algorithms. We verify the algorithm’s accuracy and assess the statistical reconstruction error in the presence of atom projection noise as a function of the number of atoms and images. Finally, we extract the spatial phase profiles from experimental data obtained by an atom gravimeter.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00337-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00337-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Atom interferometers are employed for numerous purposes such as inertial sensing. They measure forces by encoding their signal in phase shifts between matter waves. Signal extraction algorithms typically require the resulting interference patterns to feature a priori known spatial distributions of intensity and phase. Deviations from these assumed spatial distributions, such as those caused by inhomogeneous laser wave fronts, can lead to systematic errors. For long interrogation times, such as for space operation, these distributions can display highly complex structures. We present an extraction algorithm designed for interference patterns featuring arbitrary and unknown temporally stable spatial phase profiles utilizing Principal Component Analysis. It characterizes complex phase profiles and thereby turns effects into a measured quantity which caused systematic errors in previous algorithms. We verify the algorithm’s accuracy and assess the statistical reconstruction error in the presence of atom projection noise as a function of the number of atoms and images. Finally, we extract the spatial phase profiles from experimental data obtained by an atom gravimeter.

原子干涉测量的空间分辨相位重建
原子干涉仪用于许多用途,例如惯性传感。他们通过编码物质波之间相移的信号来测量力。信号提取算法通常要求得到的干涉模式具有先验已知的强度和相位的空间分布。偏离这些假定的空间分布,例如由不均匀激光波前引起的那些,可能导致系统误差。对于长时间的审讯,如空间操作,这些分布可以显示高度复杂的结构。我们提出了一种提取算法设计的干扰模式具有任意和未知的时间稳定空间相位轮廓利用主成分分析。它表征了复杂的相位曲线,从而将效应转化为测量量,这在以前的算法中造成了系统误差。我们验证了算法的准确性,并评估了原子投影噪声存在时的统计重建误差作为原子和图像数量的函数。最后,从原子重力仪获得的实验数据中提取出空间相分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信