Active learning high coverage sets of complementary reaction conditions†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sofia L. Sivilotti, David M. Friday and Nicholas E. Jackson
{"title":"Active learning high coverage sets of complementary reaction conditions†","authors":"Sofia L. Sivilotti, David M. Friday and Nicholas E. Jackson","doi":"10.1039/D4DD00365A","DOIUrl":null,"url":null,"abstract":"<p >Chemical reaction conditions capable of producing high yields over diverse reactants are a desired component of nearly all chemical and materials discovery campaigns. While much work has been done to discover individual general reaction conditions, any single conditions are necessarily limited over increasingly diverse chemical spaces. A potential solution to this problem is to identify small sets of complementary reaction conditions that, when combined, cover a larger chemical space than any one general reaction condition. In this work, we analyze experimentally derived datasets to assess the relative performance of individual general reaction conditions <em>vs.</em> sets of complementary reaction conditions. We then propose and benchmark active learning methods to efficiently discover these complimentary sets of conditions. The results show the value of active learning in identifying complementary sets of reaction conditions and provide an avenue for improving synthetic hit rates in high-throughput synthesis campaigns.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 3","pages":" 846-852"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00365a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00365a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical reaction conditions capable of producing high yields over diverse reactants are a desired component of nearly all chemical and materials discovery campaigns. While much work has been done to discover individual general reaction conditions, any single conditions are necessarily limited over increasingly diverse chemical spaces. A potential solution to this problem is to identify small sets of complementary reaction conditions that, when combined, cover a larger chemical space than any one general reaction condition. In this work, we analyze experimentally derived datasets to assess the relative performance of individual general reaction conditions vs. sets of complementary reaction conditions. We then propose and benchmark active learning methods to efficiently discover these complimentary sets of conditions. The results show the value of active learning in identifying complementary sets of reaction conditions and provide an avenue for improving synthetic hit rates in high-throughput synthesis campaigns.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信