Lican Wang , Siyang Zhong , Bao Chen , Peng Zhou , Wangqiao Chen , Xin Zhang
{"title":"A hybrid multilevel fast multipole and equivalent source method for aeroacoustic scattering prediction","authors":"Lican Wang , Siyang Zhong , Bao Chen , Peng Zhou , Wangqiao Chen , Xin Zhang","doi":"10.1016/j.jsv.2025.119033","DOIUrl":null,"url":null,"abstract":"<div><div>A hybrid multilevel fast multipole and equivalent source method (FM-ESM) has been developed for efficient aeroacoustic scattering prediction, which is distinguished by its application of the equivalent source concept across all fast multipole stages, including particle-to-multipole, multipole-to-multipole, multipole-to-local, local-to-local, local-to-particle, and particle-to-particle translations. The capability of the method for scattering predictions in two and three dimensions with different flow conditions is demonstrated through an analytical solution utilizing an image source method. Furthermore, the flexibility to reduce the number of equivalent sources is explored during particle-to-multipole and particle-to-particle translations, where the mismatch between equivalent sources and collocation points results in an over-determined system. To iteratively invert the resulting rectangular matrix, a variant of the generalized minimal residual algorithm known as the BA-GMRES method is utilized, accompanied by a specified pre-conditioner. A fast multipole boundary element method is included for reference under the same framework. Through examinations of cylindrical and spherical scattering, it is observed that FM-ESM, with fewer sources, efficiently yields accurate results in cases involving fictitious resonant frequencies. The method’s applicability to large-scale problems makes it a complementary choice for aeroacoustic scattering prediction.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"607 ","pages":"Article 119033"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25001075","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A hybrid multilevel fast multipole and equivalent source method (FM-ESM) has been developed for efficient aeroacoustic scattering prediction, which is distinguished by its application of the equivalent source concept across all fast multipole stages, including particle-to-multipole, multipole-to-multipole, multipole-to-local, local-to-local, local-to-particle, and particle-to-particle translations. The capability of the method for scattering predictions in two and three dimensions with different flow conditions is demonstrated through an analytical solution utilizing an image source method. Furthermore, the flexibility to reduce the number of equivalent sources is explored during particle-to-multipole and particle-to-particle translations, where the mismatch between equivalent sources and collocation points results in an over-determined system. To iteratively invert the resulting rectangular matrix, a variant of the generalized minimal residual algorithm known as the BA-GMRES method is utilized, accompanied by a specified pre-conditioner. A fast multipole boundary element method is included for reference under the same framework. Through examinations of cylindrical and spherical scattering, it is observed that FM-ESM, with fewer sources, efficiently yields accurate results in cases involving fictitious resonant frequencies. The method’s applicability to large-scale problems makes it a complementary choice for aeroacoustic scattering prediction.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.