Huai Liu , Yingzhou Fu , Ling Tang , Bo Song , Wangning Gu , Hongmin Yang , Tengfei Xiao , Hui Wang , Pan Chen
{"title":"O-GlcNAc-modified HOXA9 suppresses ferroptosis via promoting UBR5-mediated SIRT6 degradation in nasopharyngeal carcinoma","authors":"Huai Liu , Yingzhou Fu , Ling Tang , Bo Song , Wangning Gu , Hongmin Yang , Tengfei Xiao , Hui Wang , Pan Chen","doi":"10.1016/j.neo.2025.101142","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Nasopharyngeal carcinoma (NPC) is the most common malignancy of the nasopharynx. Ferroptosis induction shows anti-tumor activities in cancers including NPC. Elucidating the regulatory mechanism of ferroptosis is crucial for developing targeted therapeutic strategies for NPC.</div></div><div><h3>Methods</h3><div>The GEO dataset (GSE68799) was used to analyze HOXA9 expression in NPC. Cell viability, levels of MDA, total iron, Fe<sup>2+</sup> and GSH, and lipid peroxidation were examined for ferroptosis evaluation. O-GlcNAcylation levels on HOXA9 and ubiquitination levels on SIRT6 were detected by immunoprecipitation. ChIP and luciferase assays were applied for determining the interaction of HOXA9 and UBR5. The interaction between UBR5 and SIRT6, OGT and HOXA9 were evaluated by Co-IP assays. A subcutaneous NPC mouse model was established to explore whether knockdown of HOXA9 or UBR5 regulates tumor growth <em>in vivo</em>.</div></div><div><h3>Results</h3><div>HOXA9 was highly expressed in NPC, and knockdown of HOXA9 elevated total iron, Fe<sup>2+</sup> and lipid peroxidation and reduced GSH and NPC cell viability. O-GlcNAcylation stabilized HOXA9 and facilitated its nuclear translocation in NPC cells. HOXA9 directly bound to UBR5 promoter to increase its expression, thus accelerating ubiquitination and degradation of SIRT6. HOXA9 restrained ferroptosis via promoting UBR5 expression, and UBR5 suppressed ferroptosis through promotion of SIRT6 ubiquitination and degradation. Knockdown of HOXA9 or UBR5 promoted ferroptosis and inhibited NPC growth in mice.</div></div><div><h3>Conclusion</h3><div>O-GlcNAc-modified HOXA9 inhibits ferroptosis by enhancing UBR5 expression and ubiquitination and degradation of SIRT6 in NPC cells, thus accelerating NPC progression. Our study provides potential therapeutic targets for NPC treatment.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"62 ","pages":"Article 101142"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000211","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Nasopharyngeal carcinoma (NPC) is the most common malignancy of the nasopharynx. Ferroptosis induction shows anti-tumor activities in cancers including NPC. Elucidating the regulatory mechanism of ferroptosis is crucial for developing targeted therapeutic strategies for NPC.
Methods
The GEO dataset (GSE68799) was used to analyze HOXA9 expression in NPC. Cell viability, levels of MDA, total iron, Fe2+ and GSH, and lipid peroxidation were examined for ferroptosis evaluation. O-GlcNAcylation levels on HOXA9 and ubiquitination levels on SIRT6 were detected by immunoprecipitation. ChIP and luciferase assays were applied for determining the interaction of HOXA9 and UBR5. The interaction between UBR5 and SIRT6, OGT and HOXA9 were evaluated by Co-IP assays. A subcutaneous NPC mouse model was established to explore whether knockdown of HOXA9 or UBR5 regulates tumor growth in vivo.
Results
HOXA9 was highly expressed in NPC, and knockdown of HOXA9 elevated total iron, Fe2+ and lipid peroxidation and reduced GSH and NPC cell viability. O-GlcNAcylation stabilized HOXA9 and facilitated its nuclear translocation in NPC cells. HOXA9 directly bound to UBR5 promoter to increase its expression, thus accelerating ubiquitination and degradation of SIRT6. HOXA9 restrained ferroptosis via promoting UBR5 expression, and UBR5 suppressed ferroptosis through promotion of SIRT6 ubiquitination and degradation. Knockdown of HOXA9 or UBR5 promoted ferroptosis and inhibited NPC growth in mice.
Conclusion
O-GlcNAc-modified HOXA9 inhibits ferroptosis by enhancing UBR5 expression and ubiquitination and degradation of SIRT6 in NPC cells, thus accelerating NPC progression. Our study provides potential therapeutic targets for NPC treatment.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.