Predicting the effect of Bevacizumab therapy in ovarian cancer from H&E whole slide images using transformer model

Md Shakhawat Hossain , Munim Ahmed , Md Sahilur Rahman , MM Mahbubul Syeed , Mohammad Faisal Uddin
{"title":"Predicting the effect of Bevacizumab therapy in ovarian cancer from H&E whole slide images using transformer model","authors":"Md Shakhawat Hossain ,&nbsp;Munim Ahmed ,&nbsp;Md Sahilur Rahman ,&nbsp;MM Mahbubul Syeed ,&nbsp;Mohammad Faisal Uddin","doi":"10.1016/j.ibmed.2025.100231","DOIUrl":null,"url":null,"abstract":"<div><div>Ovarian cancer (OC) ranks fifth in all cancer-related fatalities in women. Epithelial ovarian cancer (EOC) is a subclass of OC, accounting for 95 % of all patients. Conventional treatment for EOC is debulking surgery with adjuvant Chemotherapy; however, in 70 % of cases, this leads to progressive resistance and tumor recurrence. The United States Food and Drug Administration (FDA) recently approved Bevacizumab therapy for EOC patients. Bevacizumab improved survival and decreased recurrence in 30 % of cases, while the rest reported side effects, which include severe hypertension (27 %), thrombocytopenia (26 %), bleeding issues (39 %), heart problems (11 %), kidney problems (7 %), intestinal perforation and delayed wound healing. Moreover, it is costly; single-cycle Bevacizumab therapy costs approximately $3266. Therefore, selecting patients for this therapy is critical due to the high cost, probable adverse effects and small beneficiaries. Several methods were proposed previously; however, they failed to attain adequate accuracy. We present an AI-driven method to predict the effect from H&amp;E whole slide image (WSI) produced from a patient's biopsy. We trained multiple CNN and transformer models using 10 × and 20 × images to predict the effect. Finally, the Data Efficient Image Transformer (DeiT) model was selected considering its high accuracy, interoperability and time efficiency. The proposed method achieved 96.60 % test accuracy and 93 % accuracy in 5-fold cross-validation and can predict the effect in less than 30 s. This method outperformed the state-of-the-art test accuracy (85.10 %) by 11 % and cross-validation accuracy (88.2 %) by 5 %. High accuracy and low prediction time ensured the efficacy of the proposed method.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100231"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer (OC) ranks fifth in all cancer-related fatalities in women. Epithelial ovarian cancer (EOC) is a subclass of OC, accounting for 95 % of all patients. Conventional treatment for EOC is debulking surgery with adjuvant Chemotherapy; however, in 70 % of cases, this leads to progressive resistance and tumor recurrence. The United States Food and Drug Administration (FDA) recently approved Bevacizumab therapy for EOC patients. Bevacizumab improved survival and decreased recurrence in 30 % of cases, while the rest reported side effects, which include severe hypertension (27 %), thrombocytopenia (26 %), bleeding issues (39 %), heart problems (11 %), kidney problems (7 %), intestinal perforation and delayed wound healing. Moreover, it is costly; single-cycle Bevacizumab therapy costs approximately $3266. Therefore, selecting patients for this therapy is critical due to the high cost, probable adverse effects and small beneficiaries. Several methods were proposed previously; however, they failed to attain adequate accuracy. We present an AI-driven method to predict the effect from H&E whole slide image (WSI) produced from a patient's biopsy. We trained multiple CNN and transformer models using 10 × and 20 × images to predict the effect. Finally, the Data Efficient Image Transformer (DeiT) model was selected considering its high accuracy, interoperability and time efficiency. The proposed method achieved 96.60 % test accuracy and 93 % accuracy in 5-fold cross-validation and can predict the effect in less than 30 s. This method outperformed the state-of-the-art test accuracy (85.10 %) by 11 % and cross-validation accuracy (88.2 %) by 5 %. High accuracy and low prediction time ensured the efficacy of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信