Md Shakhawat Hossain , Munim Ahmed , Md Sahilur Rahman , MM Mahbubul Syeed , Mohammad Faisal Uddin
{"title":"Predicting the effect of Bevacizumab therapy in ovarian cancer from H&E whole slide images using transformer model","authors":"Md Shakhawat Hossain , Munim Ahmed , Md Sahilur Rahman , MM Mahbubul Syeed , Mohammad Faisal Uddin","doi":"10.1016/j.ibmed.2025.100231","DOIUrl":null,"url":null,"abstract":"<div><div>Ovarian cancer (OC) ranks fifth in all cancer-related fatalities in women. Epithelial ovarian cancer (EOC) is a subclass of OC, accounting for 95 % of all patients. Conventional treatment for EOC is debulking surgery with adjuvant Chemotherapy; however, in 70 % of cases, this leads to progressive resistance and tumor recurrence. The United States Food and Drug Administration (FDA) recently approved Bevacizumab therapy for EOC patients. Bevacizumab improved survival and decreased recurrence in 30 % of cases, while the rest reported side effects, which include severe hypertension (27 %), thrombocytopenia (26 %), bleeding issues (39 %), heart problems (11 %), kidney problems (7 %), intestinal perforation and delayed wound healing. Moreover, it is costly; single-cycle Bevacizumab therapy costs approximately $3266. Therefore, selecting patients for this therapy is critical due to the high cost, probable adverse effects and small beneficiaries. Several methods were proposed previously; however, they failed to attain adequate accuracy. We present an AI-driven method to predict the effect from H&E whole slide image (WSI) produced from a patient's biopsy. We trained multiple CNN and transformer models using 10 × and 20 × images to predict the effect. Finally, the Data Efficient Image Transformer (DeiT) model was selected considering its high accuracy, interoperability and time efficiency. The proposed method achieved 96.60 % test accuracy and 93 % accuracy in 5-fold cross-validation and can predict the effect in less than 30 s. This method outperformed the state-of-the-art test accuracy (85.10 %) by 11 % and cross-validation accuracy (88.2 %) by 5 %. High accuracy and low prediction time ensured the efficacy of the proposed method.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100231"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer (OC) ranks fifth in all cancer-related fatalities in women. Epithelial ovarian cancer (EOC) is a subclass of OC, accounting for 95 % of all patients. Conventional treatment for EOC is debulking surgery with adjuvant Chemotherapy; however, in 70 % of cases, this leads to progressive resistance and tumor recurrence. The United States Food and Drug Administration (FDA) recently approved Bevacizumab therapy for EOC patients. Bevacizumab improved survival and decreased recurrence in 30 % of cases, while the rest reported side effects, which include severe hypertension (27 %), thrombocytopenia (26 %), bleeding issues (39 %), heart problems (11 %), kidney problems (7 %), intestinal perforation and delayed wound healing. Moreover, it is costly; single-cycle Bevacizumab therapy costs approximately $3266. Therefore, selecting patients for this therapy is critical due to the high cost, probable adverse effects and small beneficiaries. Several methods were proposed previously; however, they failed to attain adequate accuracy. We present an AI-driven method to predict the effect from H&E whole slide image (WSI) produced from a patient's biopsy. We trained multiple CNN and transformer models using 10 × and 20 × images to predict the effect. Finally, the Data Efficient Image Transformer (DeiT) model was selected considering its high accuracy, interoperability and time efficiency. The proposed method achieved 96.60 % test accuracy and 93 % accuracy in 5-fold cross-validation and can predict the effect in less than 30 s. This method outperformed the state-of-the-art test accuracy (85.10 %) by 11 % and cross-validation accuracy (88.2 %) by 5 %. High accuracy and low prediction time ensured the efficacy of the proposed method.