Constraint vector bundles and reduction of Lie (bi-)algebroids

IF 0.6 4区 数学 Q3 MATHEMATICS
Marvin Dippell , David Kern
{"title":"Constraint vector bundles and reduction of Lie (bi-)algebroids","authors":"Marvin Dippell ,&nbsp;David Kern","doi":"10.1016/j.difgeo.2025.102242","DOIUrl":null,"url":null,"abstract":"<div><div>We present a framework for the reduction of various geometric structures extending the classical coisotropic Poisson reduction. For this we introduce constraint manifolds and constraint vector bundles. A constraint Serre-Swan theorem is proven, identifying constraint vector bundles with certain finitely generated projective modules, and a Cartan calculus for constraint differentiable forms and multivector fields is introduced. All of these constructions will be shown to be compatible with reduction. Finally, we apply this to obtain a reduction procedure for Lie (bi-)algebroids and Dirac manifolds.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102242"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000178","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a framework for the reduction of various geometric structures extending the classical coisotropic Poisson reduction. For this we introduce constraint manifolds and constraint vector bundles. A constraint Serre-Swan theorem is proven, identifying constraint vector bundles with certain finitely generated projective modules, and a Cartan calculus for constraint differentiable forms and multivector fields is introduced. All of these constructions will be shown to be compatible with reduction. Finally, we apply this to obtain a reduction procedure for Lie (bi-)algebroids and Dirac manifolds.
李(双)代数群的约束向量束与约简
我们提出了一个框架,用于各种几何结构的约简,扩展了经典的各向同性泊松约简。为此,我们引入约束流形和约束向量束。证明了约束Serre-Swan定理,用有限生成的投影模识别约束向量束,并介绍了约束可微形式和多向量场的Cartan演算。所有这些结构都将被证明是与还原相容的。最后,我们将此应用于Lie(双-)代数群和Dirac流形的约简过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信