{"title":"Potential use of ZnO anchored boron industrial waste microparticles as a novel eco-friendly activator in cis-polybutadiene /natural rubber composites","authors":"Deniz Akin Sahbaz , Erol Goksu","doi":"10.1016/j.solidstatesciences.2025.107884","DOIUrl":null,"url":null,"abstract":"<div><div>Boron industrial waste (BIW) is a commercially valuable raw material in many industries. The evaluation of BIW is of increasing importance because of the rapid and growing consumption of raw material resources in the world. In this study, the BIW was modified by ZnO and then the ZnO anchored boron industrial waste (ZnO_BIW) was used as an activator in the vulcanization of cis-polybutadiene/natural rubber (cis-PB/NR/ZnO_BIW) composites to reduce the amount of carbon dioxide released into nature in the rubber industry, as well as decrease the vulcanization time, resulting in energy saving. The composites were prepared using different loads of ZnO_BIW (1, 3, 5, 7 and 10 phr), whose optimum proportions of commercial ZnO are used in the rubber industry. BIW, ZnO_BIW and cis-PB/NR/ZnO_BIW composites were characterized by SEM, EDX, FTIR, and XRD. The effect of the ZnO_BIW incorporation amount on the rheological, structural, and physico-mechanical properties of the cis-PB/NR/ZnO_BIW composites was assessed and the properties of the rubber composites were compared with each other. According to the results, 5 phr of ZnO_BIW has been given significantly better performance in tensile strength (15.97 N/mm<sup>2</sup>), elongation at break (742.47 %), optimum cure time (12.26 min), and cure rate index (12.47 min<sup>−1</sup>) in comparison with the other phr ratios. It was found that the new activator could be used as a curing activator and simultaneously reinforcing filler. The utilization of ZnO_BIW as an activator to produce rubber products can greatly promote rubber technology to be cost-effective and has ecological potentials.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"163 ","pages":"Article 107884"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825000627","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Boron industrial waste (BIW) is a commercially valuable raw material in many industries. The evaluation of BIW is of increasing importance because of the rapid and growing consumption of raw material resources in the world. In this study, the BIW was modified by ZnO and then the ZnO anchored boron industrial waste (ZnO_BIW) was used as an activator in the vulcanization of cis-polybutadiene/natural rubber (cis-PB/NR/ZnO_BIW) composites to reduce the amount of carbon dioxide released into nature in the rubber industry, as well as decrease the vulcanization time, resulting in energy saving. The composites were prepared using different loads of ZnO_BIW (1, 3, 5, 7 and 10 phr), whose optimum proportions of commercial ZnO are used in the rubber industry. BIW, ZnO_BIW and cis-PB/NR/ZnO_BIW composites were characterized by SEM, EDX, FTIR, and XRD. The effect of the ZnO_BIW incorporation amount on the rheological, structural, and physico-mechanical properties of the cis-PB/NR/ZnO_BIW composites was assessed and the properties of the rubber composites were compared with each other. According to the results, 5 phr of ZnO_BIW has been given significantly better performance in tensile strength (15.97 N/mm2), elongation at break (742.47 %), optimum cure time (12.26 min), and cure rate index (12.47 min−1) in comparison with the other phr ratios. It was found that the new activator could be used as a curing activator and simultaneously reinforcing filler. The utilization of ZnO_BIW as an activator to produce rubber products can greatly promote rubber technology to be cost-effective and has ecological potentials.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.