{"title":"Rehab-Bot: A home-based lower-extremity rehabilitation robot for muscle recovery","authors":"Sandro Mihradi , Edgar Buwana Sutawika , Vani Virdyawan , Rachmat Zulkarnain Goesasi , Masahiro Todoh","doi":"10.1016/j.cogr.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a proof-of-concept for a lower-extremity rehabilitation device, called Rehab-bot, that would aid patients with lower-limb impairments in continuing their rehabilitation in its required intensity at home after inpatient care. This research focuses on developing the patient‘s muscle training feature using admittance control to generate resistance for isotonic exercise, particularly emphasizing the potential for progressive resistance training. The mechanical structure of the Rehab-bot was inspired by a continuous passive motion machine that can be optimized to be a light and compact device suitable for home-based use. Systems design, development, and experimental evaluation are presented. Experiments were performed with one healthy subject by monitoring two parameters: the forces exerted by leg muscles through a force sensor and the resulting position of the foot support that is actuated by the robot. Results have shown that Rehab-bot can demonstrate lower-limb isotonic exercise by generating a virtual load that can be progressively increased.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 114-125"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a proof-of-concept for a lower-extremity rehabilitation device, called Rehab-bot, that would aid patients with lower-limb impairments in continuing their rehabilitation in its required intensity at home after inpatient care. This research focuses on developing the patient‘s muscle training feature using admittance control to generate resistance for isotonic exercise, particularly emphasizing the potential for progressive resistance training. The mechanical structure of the Rehab-bot was inspired by a continuous passive motion machine that can be optimized to be a light and compact device suitable for home-based use. Systems design, development, and experimental evaluation are presented. Experiments were performed with one healthy subject by monitoring two parameters: the forces exerted by leg muscles through a force sensor and the resulting position of the foot support that is actuated by the robot. Results have shown that Rehab-bot can demonstrate lower-limb isotonic exercise by generating a virtual load that can be progressively increased.