Iterated satellite operators on the knot concordance group

IF 1.5 1区 数学 Q1 MATHEMATICS
Jae Choon Cha , Taehee Kim
{"title":"Iterated satellite operators on the knot concordance group","authors":"Jae Choon Cha ,&nbsp;Taehee Kim","doi":"10.1016/j.aim.2025.110203","DOIUrl":null,"url":null,"abstract":"<div><div>We show that for a winding number zero satellite operator <em>P</em> on the knot concordance group, if the axis of <em>P</em> has nontrivial self-pairing under the Blanchfield form of the pattern, then the image of the iteration <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> generates an infinite rank subgroup for each <em>n</em>. Furthermore, the graded quotients of the filtration of the knot concordance group associated with <em>P</em> have infinite rank at all levels. This gives an affirmative answer to a question of Hedden and Pinzón-Caicedo in many cases. We also show that under the same hypotheses, <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is not a homomorphism on the knot concordance group for each <em>n</em>. We use amenable <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-signatures to prove these results.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"468 ","pages":"Article 110203"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500101X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that for a winding number zero satellite operator P on the knot concordance group, if the axis of P has nontrivial self-pairing under the Blanchfield form of the pattern, then the image of the iteration Pn generates an infinite rank subgroup for each n. Furthermore, the graded quotients of the filtration of the knot concordance group associated with P have infinite rank at all levels. This gives an affirmative answer to a question of Hedden and Pinzón-Caicedo in many cases. We also show that under the same hypotheses, Pn is not a homomorphism on the knot concordance group for each n. We use amenable L2-signatures to prove these results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信