A coupled immersed boundary method and isogeometric shell analysis for fluid–structure interaction of flexible and lightweight shells in high-Reynolds number flows

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Keye Yan , Yue Wu , Qiming Zhu , Boo Cheong Khoo
{"title":"A coupled immersed boundary method and isogeometric shell analysis for fluid–structure interaction of flexible and lightweight shells in high-Reynolds number flows","authors":"Keye Yan ,&nbsp;Yue Wu ,&nbsp;Qiming Zhu ,&nbsp;Boo Cheong Khoo","doi":"10.1016/j.cma.2025.117898","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an efficient numerical framework for simulating fluid–structure interactions (FSIs) involving flexible, lightweight shells subjected to high-Reynolds-number flows. By combining the immersed boundary method (IBM) and isogeometric analysis (IGA), the framework incorporates three major innovations: (1) a wall-modeling, direct-forcing, diffused-interface IBM tailored for FSI simulations with high-Reynolds-number turbulent flows, employing non-equilibrium explicit wall functions; (2) integration of the interface quasi-Newton inverse least-squares (IQN-ILS) method into the IBM/IGA framework to enhance the accuracy and efficiency of iterative Gauss–Seidel coupling in strongly coupled FSI scenarios; and (3) high-order solvers for both fluid and structural domains, featuring a sixth-order compact finite difference method (FDM) for fluid dynamics and isogeometric shell formulations for structural analysis. The framework is validated through four numerical test cases, including simulations of a hinged flag, an inverted flag, a membrane airfoil, and an air-supported membrane structure. The results demonstrate good agreement with reference data, showing the framework’s efficiency, accuracy, and applicability for solving large-scale shell-related FSI problems across diverse engineering and scientific domains.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"439 ","pages":"Article 117898"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001707","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an efficient numerical framework for simulating fluid–structure interactions (FSIs) involving flexible, lightweight shells subjected to high-Reynolds-number flows. By combining the immersed boundary method (IBM) and isogeometric analysis (IGA), the framework incorporates three major innovations: (1) a wall-modeling, direct-forcing, diffused-interface IBM tailored for FSI simulations with high-Reynolds-number turbulent flows, employing non-equilibrium explicit wall functions; (2) integration of the interface quasi-Newton inverse least-squares (IQN-ILS) method into the IBM/IGA framework to enhance the accuracy and efficiency of iterative Gauss–Seidel coupling in strongly coupled FSI scenarios; and (3) high-order solvers for both fluid and structural domains, featuring a sixth-order compact finite difference method (FDM) for fluid dynamics and isogeometric shell formulations for structural analysis. The framework is validated through four numerical test cases, including simulations of a hinged flag, an inverted flag, a membrane airfoil, and an air-supported membrane structure. The results demonstrate good agreement with reference data, showing the framework’s efficiency, accuracy, and applicability for solving large-scale shell-related FSI problems across diverse engineering and scientific domains.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信