{"title":"Brain tumor classification using a hybrid ensemble of Xception and parallel deep CNN models","authors":"Seoyoung Yoon","doi":"10.1016/j.imu.2025.101629","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Accurate classification of brain tumors is essential for effective diagnosis and treatment planning. The purpose of this study is to develop and evaluate a hybrid ensemble brain tumor classification method to leverage the strengths of two different architectures for improving the accuracy, robustness, and reliability of brain tumor classification.</div></div><div><h3>Methodology</h3><div>This study introduces a novel and innovative classifier that concatenates the Xception convolutional neural network (CNN) with kernel size of (3,3) and a parallel deep CNN (PDCNN) with kernel size of (5,5) and (12,12) to classify brain tumor images from the Kaggle dataset into four categories: meningioma, glioma, pituitary, and no tumor.</div></div><div><h3>Results</h3><div>The Xception model alone achieved a classification accuracy of 98.26 %, while the PDCNN model achieved 94.85 % on the same dataset. By concatenating these two models, the proposed hybrid ensemble approach enhanced overall classification accuracy to 99.09 %. In comparison with state-of-the-art models, VGG19 achieved an accuracy of 94.69 %, while ResNet152V2 achieved 96.27 % on the same dataset. The proposed hybrid ensemble model with Xception and PDCNN consistently outperformed both VGG19 and ResNet152V2.</div></div><div><h3>Conclusion</h3><div>This synergy of concatenating the Xception and PDCNN architectures demonstrates the innovativeness and effectiveness of leveraging complementary strengths in feature extraction and classification, leading to enhanced performance in brain tumor detection. The results highlight the potential of ensemble deep learning models in advancing automated medical image analysis and improving clinical outcomes.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"54 ","pages":"Article 101629"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Accurate classification of brain tumors is essential for effective diagnosis and treatment planning. The purpose of this study is to develop and evaluate a hybrid ensemble brain tumor classification method to leverage the strengths of two different architectures for improving the accuracy, robustness, and reliability of brain tumor classification.
Methodology
This study introduces a novel and innovative classifier that concatenates the Xception convolutional neural network (CNN) with kernel size of (3,3) and a parallel deep CNN (PDCNN) with kernel size of (5,5) and (12,12) to classify brain tumor images from the Kaggle dataset into four categories: meningioma, glioma, pituitary, and no tumor.
Results
The Xception model alone achieved a classification accuracy of 98.26 %, while the PDCNN model achieved 94.85 % on the same dataset. By concatenating these two models, the proposed hybrid ensemble approach enhanced overall classification accuracy to 99.09 %. In comparison with state-of-the-art models, VGG19 achieved an accuracy of 94.69 %, while ResNet152V2 achieved 96.27 % on the same dataset. The proposed hybrid ensemble model with Xception and PDCNN consistently outperformed both VGG19 and ResNet152V2.
Conclusion
This synergy of concatenating the Xception and PDCNN architectures demonstrates the innovativeness and effectiveness of leveraging complementary strengths in feature extraction and classification, leading to enhanced performance in brain tumor detection. The results highlight the potential of ensemble deep learning models in advancing automated medical image analysis and improving clinical outcomes.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.