A noncoforming virtual element approximation for the Oseen eigenvalue problem

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Dibyendu Adak, Felipe Lepe, Gonzalo Rivera
{"title":"A noncoforming virtual element approximation for the Oseen eigenvalue problem","authors":"Dibyendu Adak, Felipe Lepe, Gonzalo Rivera","doi":"10.1093/imanum/drae108","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze a nonconforming virtual element method to approximate the eigenfunctions and eigenvalues of the two dimensional Oseen eigenvalue problem. The spaces under consideration lead to a divergence-free method that is capable to capture properly the divergence at discrete level and the eigenvalues and eigenfunctions. Under the compact theory for operators, we prove convergence and error estimates for the method. By employing the theory of compact operators, we recover the double order of convergence of the spectrum. Finally, we present numerical tests to assess the performance of the proposed numerical scheme.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae108","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyze a nonconforming virtual element method to approximate the eigenfunctions and eigenvalues of the two dimensional Oseen eigenvalue problem. The spaces under consideration lead to a divergence-free method that is capable to capture properly the divergence at discrete level and the eigenvalues and eigenfunctions. Under the compact theory for operators, we prove convergence and error estimates for the method. By employing the theory of compact operators, we recover the double order of convergence of the spectrum. Finally, we present numerical tests to assess the performance of the proposed numerical scheme.
Oseen特征值问题的非共形虚元逼近
本文分析了二维Oseen特征值问题的特征函数和特征值的非协调虚元逼近方法。所考虑的空间导致了一种无散度的方法,该方法能够适当地捕获离散水平上的散度以及特征值和特征函数。在算子紧致理论下,证明了该方法的收敛性和误差估计。利用紧算子理论,恢复了谱的双阶收敛性。最后,我们给出了数值测试来评估所提出的数值方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信