A-posteriori error estimates for systems of hyperbolic conservation laws via computing negative norms of local residuals

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jan Giesselmann, Aleksey Sikstel
{"title":"A-posteriori error estimates for systems of hyperbolic conservation laws via computing negative norms of local residuals","authors":"Jan Giesselmann, Aleksey Sikstel","doi":"10.1093/imanum/drae111","DOIUrl":null,"url":null,"abstract":"We prove rigorous a-posteriori error estimates for first-order finite-volume approximations of nonlinear systems of hyperbolic conservation laws in one spatial dimension. Our estimators rely on recent stability results by Bressan, Chiri and Shen, a new way to localize residuals and a novel method to compute negative-order norms of these local residuals. Computing negative-order norms becomes possible by suitably projecting test functions onto a finite dimensional space. Numerical experiments show that the error estimator converges with the rate predicted by a-priori error estimates.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae111","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We prove rigorous a-posteriori error estimates for first-order finite-volume approximations of nonlinear systems of hyperbolic conservation laws in one spatial dimension. Our estimators rely on recent stability results by Bressan, Chiri and Shen, a new way to localize residuals and a novel method to compute negative-order norms of these local residuals. Computing negative-order norms becomes possible by suitably projecting test functions onto a finite dimensional space. Numerical experiments show that the error estimator converges with the rate predicted by a-priori error estimates.
计算局部残差负规范的双曲守恒律系统的后验误差估计
我们证明了一维双曲型守恒非线性系统一阶有限体积近似的严格后验误差估计。我们的估计依赖于Bressan, Chiri和Shen最近的稳定性结果,一种新的局部残差的方法和计算这些局部残差的负阶范数的新方法。通过适当地将测试函数投影到有限维空间上,计算负阶范数成为可能。数值实验表明,该误差估计器的收敛速度与先验误差估计预测的收敛速度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信