{"title":"Semantic segmentation of underwater images based on the improved SegFormer","authors":"Bowei Chen, Wei Zhao, Qiusheng Zhang, Mingliang Li, Mingyang Qi, You Tang","doi":"10.3389/fmars.2025.1522160","DOIUrl":null,"url":null,"abstract":"Underwater images segmentation is essential for tasks such as underwater exploration, marine environmental monitoring, and resource development. Nevertheless, given the complexity and variability of the underwater environment, improving model accuracy remains a key challenge in underwater image segmentation tasks. To address these issues, this study presents a high-performance semantic segmentation approach for underwater images based on the standard SegFormer model. First, the Mix Transformer backbone in SegFormer is replaced with a Swin Transformer to enhance feature extraction and facilitate efficient acquisition of global context information. Next, the Efficient Multi-scale Attention (EMA) mechanism is introduced in the backbone’s downsampling stages and the decoder to better capture multi-scale features, further improving segmentation accuracy. Furthermore, a Feature Pyramid Network (FPN) structure is incorporated into the decoder to combine feature maps at multiple resolutions, allowing the model to integrate contextual information effectively, enhancing robustness in complex underwater environments. Testing on the SUIM underwater image dataset shows that the proposed model achieves high performance across multiple metrics: mean Intersection over Union (MIoU) of 77.00%, mean Recall (mRecall) of 85.04%, mean Precision (mPrecision) of 89.03%, and mean F1score (mF1score) of 86.63%. Compared to the standard SegFormer, it demonstrates improvements of 3.73% in MIoU, 1.98% in mRecall, 3.38% in mPrecision, and 2.44% in mF1score, with an increase of 9.89M parameters. The results demonstrate that the proposed method achieves superior segmentation accuracy with minimal additional computation, showcasing high performance in underwater image segmentation.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"21 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1522160","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Underwater images segmentation is essential for tasks such as underwater exploration, marine environmental monitoring, and resource development. Nevertheless, given the complexity and variability of the underwater environment, improving model accuracy remains a key challenge in underwater image segmentation tasks. To address these issues, this study presents a high-performance semantic segmentation approach for underwater images based on the standard SegFormer model. First, the Mix Transformer backbone in SegFormer is replaced with a Swin Transformer to enhance feature extraction and facilitate efficient acquisition of global context information. Next, the Efficient Multi-scale Attention (EMA) mechanism is introduced in the backbone’s downsampling stages and the decoder to better capture multi-scale features, further improving segmentation accuracy. Furthermore, a Feature Pyramid Network (FPN) structure is incorporated into the decoder to combine feature maps at multiple resolutions, allowing the model to integrate contextual information effectively, enhancing robustness in complex underwater environments. Testing on the SUIM underwater image dataset shows that the proposed model achieves high performance across multiple metrics: mean Intersection over Union (MIoU) of 77.00%, mean Recall (mRecall) of 85.04%, mean Precision (mPrecision) of 89.03%, and mean F1score (mF1score) of 86.63%. Compared to the standard SegFormer, it demonstrates improvements of 3.73% in MIoU, 1.98% in mRecall, 3.38% in mPrecision, and 2.44% in mF1score, with an increase of 9.89M parameters. The results demonstrate that the proposed method achieves superior segmentation accuracy with minimal additional computation, showcasing high performance in underwater image segmentation.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.