Irrational-Window-Filter Projection Method and Application to Quasiperiodic Schrödinger Eigenproblems

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Kai Jiang, Xueyang Li, Yao Ma, Juan Zhang, Pingwen Zhang, Qi Zhou
{"title":"Irrational-Window-Filter Projection Method and Application to Quasiperiodic Schrödinger Eigenproblems","authors":"Kai Jiang, Xueyang Li, Yao Ma, Juan Zhang, Pingwen Zhang, Qi Zhou","doi":"10.1137/24m1666197","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 564-587, April 2025. <br/> Abstract. In this paper, we propose a new algorithm, the irrational-window-filter projection method (IWFPM), for quasiperiodic systems with concentrated spectral point distribution. Based on the projection method (PM), IWFPM filters out dominant spectral points by defining an irrational window and uses a corresponding index-shift transform to make the FFT available. The error analysis on the function approximation level is also given. We apply IWFPM to one-dimensional, two-dimensional (2D), and three-dimensional (3D) quasiperiodic Schrödinger eigenproblems (QSEs) to demonstrate its accuracy and efficiency. IWFPM exhibits a significant computational advantage over PM for both extended and localized quantum states. More importantly, by using IWFPM, the existence of Anderson localization in 2D and 3D QSEs is numerically verified.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"86 1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1666197","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 564-587, April 2025.
Abstract. In this paper, we propose a new algorithm, the irrational-window-filter projection method (IWFPM), for quasiperiodic systems with concentrated spectral point distribution. Based on the projection method (PM), IWFPM filters out dominant spectral points by defining an irrational window and uses a corresponding index-shift transform to make the FFT available. The error analysis on the function approximation level is also given. We apply IWFPM to one-dimensional, two-dimensional (2D), and three-dimensional (3D) quasiperiodic Schrödinger eigenproblems (QSEs) to demonstrate its accuracy and efficiency. IWFPM exhibits a significant computational advantage over PM for both extended and localized quantum states. More importantly, by using IWFPM, the existence of Anderson localization in 2D and 3D QSEs is numerically verified.
无理性窗滤波投影法及其在拟周期Schrödinger特征问题中的应用
SIAM数值分析杂志,第63卷,第2期,第564-587页,2025年4月。摘要。本文针对具有集中谱点分布的准周期系统,提出了一种新的算法——无理性窗滤波投影法。基于投影法(PM), IWFPM通过定义一个非理性窗口来滤除优势谱点,并使用相应的指数移位变换使FFT可用。给出了函数逼近级的误差分析。我们将IWFPM应用于一维,二维(2D)和三维(3D)准周期Schrödinger特征问题(qse),以证明其准确性和效率。IWFPM在扩展和局域量子态方面都比PM具有显著的计算优势。更重要的是,通过IWFPM,数值验证了二维和三维qse中Anderson定位的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信