Hsiao-Yi Chen, Takuya Nomoto, Max Hirschberger, Ryotaro Arita
{"title":"Topological Hall Effect of Skyrmions from first Principles","authors":"Hsiao-Yi Chen, Takuya Nomoto, Max Hirschberger, Ryotaro Arita","doi":"10.1103/physrevx.15.011054","DOIUrl":null,"url":null,"abstract":"We formulate a first-principles approach for calculating the topological Hall effect (THE) in magnets with noncollinear nanoscale spin textures. We employ a modeling method to determine the effective magnetic field induced by the spin texture, thereby circumventing the computational challenges associated with superlattice calculations. Based on these results, we construct a Wannier tight-binding Hamiltonian to characterize the electronic states and calculate the Hall conductivity. Applying this approach to the skyrmion material Gd</a:mi></a:mrow>2</a:mn></a:msub>PdSi</a:mi></a:mrow>3</a:mn></a:msub></a:mrow></a:math> shows good agreement with experimental data. Our analysis in momentum space further reveals that the dominant contribution to the THE arises from the crossing points between the folded bands along high-symmetry lines in the Brillouin zone. This work advances numerical techniques for simulating a general magnetic system, exemplified by but not restricted to skyrmion lattice, and its result offering insights into the complex interplay between spin textures and electronic transport. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"45 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011054","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We formulate a first-principles approach for calculating the topological Hall effect (THE) in magnets with noncollinear nanoscale spin textures. We employ a modeling method to determine the effective magnetic field induced by the spin texture, thereby circumventing the computational challenges associated with superlattice calculations. Based on these results, we construct a Wannier tight-binding Hamiltonian to characterize the electronic states and calculate the Hall conductivity. Applying this approach to the skyrmion material Gd2PdSi3 shows good agreement with experimental data. Our analysis in momentum space further reveals that the dominant contribution to the THE arises from the crossing points between the folded bands along high-symmetry lines in the Brillouin zone. This work advances numerical techniques for simulating a general magnetic system, exemplified by but not restricted to skyrmion lattice, and its result offering insights into the complex interplay between spin textures and electronic transport. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.