Lightweight Multi-User Public-Key Authenticated Encryption With Keyword Search

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Yongliang Xu;Hang Cheng;Jiguo Li;Ximeng Liu;Xinpeng Zhang;Meiqing Wang
{"title":"Lightweight Multi-User Public-Key Authenticated Encryption With Keyword Search","authors":"Yongliang Xu;Hang Cheng;Jiguo Li;Ximeng Liu;Xinpeng Zhang;Meiqing Wang","doi":"10.1109/TIFS.2025.3550054","DOIUrl":null,"url":null,"abstract":"Data confidentiality, a fundamental security element for dependable cloud storage, has been drawing widespread concern. Public-key encryption with keyword search (PEKS) has emerged as a promising approach for privacy protection while enabling efficient retrieval of encrypted data. One of the typical applications of PEKS is searching sensitive electronic medical records (EMR) in healthcare clouds. However, many traditional countermeasures fall short of balancing privacy protection with search efficiency, and they often fail to support multi-user EMR sharing. To resolve these challenges, we propose a novel lightweight multi-user public-key authenticated encryption scheme with keyword search (LM-PAEKS). Our design effectively counters the inside keyword guessing attack (IKGA) while maintaining the sizes of ciphertext and trapdoor constant in multi-user scenarios. The novelty of our approach relies on introducing a dedicated receiver server that skillfully transforms the complex many-to-many relationship between senders and receivers into a streamlined one-to-one relationship. This transformation prevents the sizes of ciphertext and trapdoor from scaling linearly with the number of participants. Our approach ensures ciphertext indistinguishability and trapdoor privacy while avoiding bilinear pairing operations on the client side. Comparative performance analysis demonstrates that LM-PAEKS features significant computational efficiency while meeting higher security requirements, positioning it as a robust alternative to existing solutions.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"3234-3246"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10919105/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Data confidentiality, a fundamental security element for dependable cloud storage, has been drawing widespread concern. Public-key encryption with keyword search (PEKS) has emerged as a promising approach for privacy protection while enabling efficient retrieval of encrypted data. One of the typical applications of PEKS is searching sensitive electronic medical records (EMR) in healthcare clouds. However, many traditional countermeasures fall short of balancing privacy protection with search efficiency, and they often fail to support multi-user EMR sharing. To resolve these challenges, we propose a novel lightweight multi-user public-key authenticated encryption scheme with keyword search (LM-PAEKS). Our design effectively counters the inside keyword guessing attack (IKGA) while maintaining the sizes of ciphertext and trapdoor constant in multi-user scenarios. The novelty of our approach relies on introducing a dedicated receiver server that skillfully transforms the complex many-to-many relationship between senders and receivers into a streamlined one-to-one relationship. This transformation prevents the sizes of ciphertext and trapdoor from scaling linearly with the number of participants. Our approach ensures ciphertext indistinguishability and trapdoor privacy while avoiding bilinear pairing operations on the client side. Comparative performance analysis demonstrates that LM-PAEKS features significant computational efficiency while meeting higher security requirements, positioning it as a robust alternative to existing solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信