MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network.

Yujun Huang, Bin Chen, Naiqi Li, Baoyi An, Shu-Tao Xia, Yaowei Wang
{"title":"MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network.","authors":"Yujun Huang, Bin Chen, Naiqi Li, Baoyi An, Shu-Tao Xia, Yaowei Wang","doi":"10.1109/TPAMI.2025.3549986","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional compressed sensing (CS) algorithms typically apply a uniform sampling rate to different image blocks. A more strategic approach could be to allocate the number of measurements adaptively, based on each image block's complexity. In this paper, we propose a Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network (MB-RACS) framework, which aims to adaptively determine the sampling rate for each image block in accordance with traditional measurement bounds theory. Moreover, since in real-world scenarios statistical information about the original image cannot be directly obtained, we suggest a multi-stage rate-adaptive sampling strategy. This strategy sequentially adjusts the sampling ratio allocation based on the information gathered from previous samplings. We formulate the multi-stage rate-adaptive sampling as a convex optimization problem and address it using a combination of Newton's method and binary search techniques. Our experiments demonstrate that the proposed MB-RACS method surpasses current leading methods, with experimental evidence also underscoring the effectiveness of each module within our proposed framework.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3549986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional compressed sensing (CS) algorithms typically apply a uniform sampling rate to different image blocks. A more strategic approach could be to allocate the number of measurements adaptively, based on each image block's complexity. In this paper, we propose a Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network (MB-RACS) framework, which aims to adaptively determine the sampling rate for each image block in accordance with traditional measurement bounds theory. Moreover, since in real-world scenarios statistical information about the original image cannot be directly obtained, we suggest a multi-stage rate-adaptive sampling strategy. This strategy sequentially adjusts the sampling ratio allocation based on the information gathered from previous samplings. We formulate the multi-stage rate-adaptive sampling as a convex optimization problem and address it using a combination of Newton's method and binary search techniques. Our experiments demonstrate that the proposed MB-RACS method surpasses current leading methods, with experimental evidence also underscoring the effectiveness of each module within our proposed framework.

MB-RACS:基于测量边界的速率自适应图像压缩传感网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信