Learning to Explore Sample Relationships.

Zhi Hou, Baosheng Yu, Chaoyue Wang, Yibing Zhan, Dacheng Tao
{"title":"Learning to Explore Sample Relationships.","authors":"Zhi Hou, Baosheng Yu, Chaoyue Wang, Yibing Zhan, Dacheng Tao","doi":"10.1109/TPAMI.2025.3549300","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the great success achieved, deep learning technologies usually suffer from data scarcity issues in real-world applications, where existing methods mainly explore sample relationships in a vanilla way from the perspectives of either the input or the loss function. In this paper, we propose a batch transformer module, BatchFormerV1, to equip deep neural networks themselves with the abilities to explore sample relationships in a learnable way. Basically, the proposed method enables data collaboration, e.g., head-class samples will also contribute to the learning of tail classes. Considering that exploring instance-level relationships has very limited impacts on dense prediction, we generalize and refer to the proposed module as BatchFormerV2, which further enables exploring sample relationships for pixel-/patch-level dense representations. In addition, to address the train-test inconsistency where a mini-batch of data samples are neither necessary nor desirable during inference, we also devise a two-stream training pipeline, i.e., a shared model is first jointly optimized with and without BatchFormerV2 which is then removed during testing. The proposed module is plug-and-play without requiring any extra inference cost. Lastly, we evaluate the proposed method on over ten popular datasets, including 1) different data scarcity settings such as long-tailed recognition, zero-shot learning, domain generalization, and contrastive learning; and 2) different visual recognition tasks ranging from image classification to object detection and panoptic segmentation. Code is available at https://zhihou7.github.io/BatchFormer.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3549300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the great success achieved, deep learning technologies usually suffer from data scarcity issues in real-world applications, where existing methods mainly explore sample relationships in a vanilla way from the perspectives of either the input or the loss function. In this paper, we propose a batch transformer module, BatchFormerV1, to equip deep neural networks themselves with the abilities to explore sample relationships in a learnable way. Basically, the proposed method enables data collaboration, e.g., head-class samples will also contribute to the learning of tail classes. Considering that exploring instance-level relationships has very limited impacts on dense prediction, we generalize and refer to the proposed module as BatchFormerV2, which further enables exploring sample relationships for pixel-/patch-level dense representations. In addition, to address the train-test inconsistency where a mini-batch of data samples are neither necessary nor desirable during inference, we also devise a two-stream training pipeline, i.e., a shared model is first jointly optimized with and without BatchFormerV2 which is then removed during testing. The proposed module is plug-and-play without requiring any extra inference cost. Lastly, we evaluate the proposed method on over ten popular datasets, including 1) different data scarcity settings such as long-tailed recognition, zero-shot learning, domain generalization, and contrastive learning; and 2) different visual recognition tasks ranging from image classification to object detection and panoptic segmentation. Code is available at https://zhihou7.github.io/BatchFormer.

学习探索样本关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信