Integrating computational insights in gold nanoparticle-mediated drug delivery: enhancing efficacy and precision.

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Frontiers in medical technology Pub Date : 2025-02-24 eCollection Date: 2025-01-01 DOI:10.3389/fmedt.2025.1528826
Amnah Alalmaie, Huda Turki Alshahrani, Manar Alqahtani, Zeyad Alshahrani, Shahad Alahmari, Asilah Asiri, Bandar Alqadi, Abdulrahman Alshahrani, Safar Alshahrani, Md Habban Akhter
{"title":"Integrating computational insights in gold nanoparticle-mediated drug delivery: enhancing efficacy and precision.","authors":"Amnah Alalmaie, Huda Turki Alshahrani, Manar Alqahtani, Zeyad Alshahrani, Shahad Alahmari, Asilah Asiri, Bandar Alqadi, Abdulrahman Alshahrani, Safar Alshahrani, Md Habban Akhter","doi":"10.3389/fmedt.2025.1528826","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) have emerged as a versatile platform in biomedical applications, particularly in drug delivery, cancer therapy, and diagnostics, due to their unique physicochemical properties. This review focuses on the integration of computational methods and artificial intelligence (AI) with nanotechnology to optimize AuNP-based therapies. Computational modeling is essential for understanding the interactions between AuNPs and biological molecules, guiding nanoparticle design for improved targeting, stability, and therapeutic efficacy. Recent advancements, including AI-driven models in precision cancer therapy and the combination of AuNPs with antimicrobial peptides (AMPs) to combat drug-resistant pathogens, are highlighted. The review also discusses challenges such as toxicity, targeting efficiency, and the need for scalable synthesis, alongside the limitations of computational modeling in capturing complex biological environments. Emphasizing the importance of ongoing research and interdisciplinary collaboration, this review underscores the potential of integrating computational insights with AuNP technology to enhance the precision, safety, and effectiveness of therapeutic and diagnostic approaches.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"7 ","pages":"1528826"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in medical technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmedt.2025.1528826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanoparticles (AuNPs) have emerged as a versatile platform in biomedical applications, particularly in drug delivery, cancer therapy, and diagnostics, due to their unique physicochemical properties. This review focuses on the integration of computational methods and artificial intelligence (AI) with nanotechnology to optimize AuNP-based therapies. Computational modeling is essential for understanding the interactions between AuNPs and biological molecules, guiding nanoparticle design for improved targeting, stability, and therapeutic efficacy. Recent advancements, including AI-driven models in precision cancer therapy and the combination of AuNPs with antimicrobial peptides (AMPs) to combat drug-resistant pathogens, are highlighted. The review also discusses challenges such as toxicity, targeting efficiency, and the need for scalable synthesis, alongside the limitations of computational modeling in capturing complex biological environments. Emphasizing the importance of ongoing research and interdisciplinary collaboration, this review underscores the potential of integrating computational insights with AuNP technology to enhance the precision, safety, and effectiveness of therapeutic and diagnostic approaches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信