Integrating computational insights in gold nanoparticle-mediated drug delivery: enhancing efficacy and precision.

IF 3.8 Q3 ENGINEERING, BIOMEDICAL
Frontiers in medical technology Pub Date : 2025-02-24 eCollection Date: 2025-01-01 DOI:10.3389/fmedt.2025.1528826
Amnah Alalmaie, Huda Turki Alshahrani, Manar Alqahtani, Zeyad Alshahrani, Shahad Alahmari, Asilah Asiri, Bandar Alqadi, Abdulrahman Alshahrani, Safar Alshahrani, Md Habban Akhter
{"title":"Integrating computational insights in gold nanoparticle-mediated drug delivery: enhancing efficacy and precision.","authors":"Amnah Alalmaie, Huda Turki Alshahrani, Manar Alqahtani, Zeyad Alshahrani, Shahad Alahmari, Asilah Asiri, Bandar Alqadi, Abdulrahman Alshahrani, Safar Alshahrani, Md Habban Akhter","doi":"10.3389/fmedt.2025.1528826","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) have emerged as a versatile platform in biomedical applications, particularly in drug delivery, cancer therapy, and diagnostics, due to their unique physicochemical properties. This review focuses on the integration of computational methods and artificial intelligence (AI) with nanotechnology to optimize AuNP-based therapies. Computational modeling is essential for understanding the interactions between AuNPs and biological molecules, guiding nanoparticle design for improved targeting, stability, and therapeutic efficacy. Recent advancements, including AI-driven models in precision cancer therapy and the combination of AuNPs with antimicrobial peptides (AMPs) to combat drug-resistant pathogens, are highlighted. The review also discusses challenges such as toxicity, targeting efficiency, and the need for scalable synthesis, alongside the limitations of computational modeling in capturing complex biological environments. Emphasizing the importance of ongoing research and interdisciplinary collaboration, this review underscores the potential of integrating computational insights with AuNP technology to enhance the precision, safety, and effectiveness of therapeutic and diagnostic approaches.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"7 ","pages":"1528826"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in medical technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmedt.2025.1528826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanoparticles (AuNPs) have emerged as a versatile platform in biomedical applications, particularly in drug delivery, cancer therapy, and diagnostics, due to their unique physicochemical properties. This review focuses on the integration of computational methods and artificial intelligence (AI) with nanotechnology to optimize AuNP-based therapies. Computational modeling is essential for understanding the interactions between AuNPs and biological molecules, guiding nanoparticle design for improved targeting, stability, and therapeutic efficacy. Recent advancements, including AI-driven models in precision cancer therapy and the combination of AuNPs with antimicrobial peptides (AMPs) to combat drug-resistant pathogens, are highlighted. The review also discusses challenges such as toxicity, targeting efficiency, and the need for scalable synthesis, alongside the limitations of computational modeling in capturing complex biological environments. Emphasizing the importance of ongoing research and interdisciplinary collaboration, this review underscores the potential of integrating computational insights with AuNP technology to enhance the precision, safety, and effectiveness of therapeutic and diagnostic approaches.

整合计算见解在金纳米颗粒介导的药物输送:提高疗效和精度。
金纳米颗粒(AuNPs)由于其独特的物理化学性质,已成为生物医学应用的多功能平台,特别是在药物输送、癌症治疗和诊断方面。本文综述了计算方法和人工智能(AI)与纳米技术的结合,以优化基于aunp的治疗方法。计算建模对于理解AuNPs与生物分子之间的相互作用,指导纳米颗粒设计以提高靶向性、稳定性和治疗效果至关重要。重点介绍了最近的进展,包括人工智能驱动的精确癌症治疗模型,以及将AuNPs与抗菌肽(amp)结合起来对抗耐药病原体。该综述还讨论了诸如毒性、靶向效率、可扩展合成的需求等挑战,以及在捕获复杂生物环境时计算建模的局限性。本综述强调了正在进行的研究和跨学科合作的重要性,强调了将计算见解与AuNP技术相结合的潜力,以提高治疗和诊断方法的准确性、安全性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信