Comparative Analysis of the Sensitivity, Specificity, Concordance, and 5-Year Predictive Power of Diabetes-Related Autoantibody Assays.

Diabetes Pub Date : 2025-09-01 DOI:10.2337/db24-0814
Jeffrey P Krischer, Sarah Muller, Lu You, Peter Achenbach, Elena Bazzigaluppi, Cristina Brigatti, Vito Lampasona, Anu Mathew, Peter Robinson, David Seftel, George Sigal, Cheng-Ting Tsai, Mingyue Wang, Liping Yu
{"title":"Comparative Analysis of the Sensitivity, Specificity, Concordance, and 5-Year Predictive Power of Diabetes-Related Autoantibody Assays.","authors":"Jeffrey P Krischer, Sarah Muller, Lu You, Peter Achenbach, Elena Bazzigaluppi, Cristina Brigatti, Vito Lampasona, Anu Mathew, Peter Robinson, David Seftel, George Sigal, Cheng-Ting Tsai, Mingyue Wang, Liping Yu","doi":"10.2337/db24-0814","DOIUrl":null,"url":null,"abstract":"<p><strong>Article highlights: </strong>Interassay concordance and 5-year diabetes prediction of islet cell autoantibody detection using the radiobinding assay (TrialNet), two independently developed multiplex electrochemiluminescence detection methods, the luciferase immune precipitation system, detection by agglutination-PCR, and truncated GADA, and IA2βA radiobinding assays are reported. There was considerable discordance that varied by type of autoantibody across the assays. Type 1 diabetes prediction was relatively high and uniform, implying confirmation of increased diabetes risk among those who are multiple autoantibody positive, although substantial false positive rates need to be considered when autoantibodies alone are used for screening to identify high diabetes risk.</p>","PeriodicalId":93977,"journal":{"name":"Diabetes","volume":" ","pages":"1535-1546"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2337/db24-0814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Article highlights: Interassay concordance and 5-year diabetes prediction of islet cell autoantibody detection using the radiobinding assay (TrialNet), two independently developed multiplex electrochemiluminescence detection methods, the luciferase immune precipitation system, detection by agglutination-PCR, and truncated GADA, and IA2βA radiobinding assays are reported. There was considerable discordance that varied by type of autoantibody across the assays. Type 1 diabetes prediction was relatively high and uniform, implying confirmation of increased diabetes risk among those who are multiple autoantibody positive, although substantial false positive rates need to be considered when autoantibodies alone are used for screening to identify high diabetes risk.

糖尿病相关自身抗体检测的敏感性、特异性、一致性和5年预测能力的比较分析。
本研究比较了在标准放射结合试验(RBA)基础上开发的新型1型糖尿病相关自身抗体检测方法。对1505例经RBA检测的5年或临床1型糖尿病患者的样本进行引用,并将其盲送至5个实验室(BDC、IDR、DRI、MSD、Enable)进行电化学发光(ECL)检测、荧光素酶免疫沉淀系统(LIPS)检测、聚合酶链反应(ADAP)多重抗体检测和n端截断的GAD65或IA2β自身抗体RBAs (tGADA/IA2β a)检测。结果:所有检测中阴性/阳性解释一致的样本比例为79.7% (GADA), 65.2% (IA-2A), 36.2% (IAA)和67.5% (ZnT8A)。预测既往RBA结果的约登指数最高的方法因自身抗体而异:IAA为0.65 LIPS(IDR), ZnT8A为0.91 ECL(BDC), GADA为0.82 tGADA RBA(IDR), IA-2A为0.91 ECL(MSD和BDC)。预测5年1型糖尿病的约登指数在不同的测定方法中差异很大,所有自身抗体组合的LIPS(DRI)的约登指数最高,各自的最大约登指数变化不大。分析之间的不一致使得在比较不同分析的结果时解释阳性问题。纵向自身抗体评估应采用相同的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信