Reliable machine learning models in genomic medicine using conformal prediction.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-02-24 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1507448
Christina Papangelou, Konstantinos Kyriakidis, Pantelis Natsiavas, Ioanna Chouvarda, Andigoni Malousi
{"title":"Reliable machine learning models in genomic medicine using conformal prediction.","authors":"Christina Papangelou, Konstantinos Kyriakidis, Pantelis Natsiavas, Ioanna Chouvarda, Andigoni Malousi","doi":"10.3389/fbinf.2025.1507448","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning and genomic medicine are the mainstays of research in delivering personalized healthcare services for disease diagnosis, risk stratification, tailored treatment, and prediction of adverse effects. However, potential prediction errors in healthcare services can have life-threatening impact, raising reasonable skepticism about whether these applications have practical benefit in clinical settings. Conformal prediction offers a versatile framework for addressing these concerns by quantifying the uncertainty of predictive models. In this perspective review, we investigate potential applications of conformalized models in genomic medicine and discuss the challenges towards bridging genomic medicine applications with clinical practice. We also demonstrate the impact of a binary transductive model and a regression-based inductive model in predicting drug response as well as the performance of a multi-class inductive predictor in addressing distribution shifts in molecular subtyping. The main conclusion is that as machine learning and genomic medicine are increasingly infiltrating healthcare services, conformal prediction has the potential to overcome the safety limitations of current methods and could be effectively integrated into uncertainty-informed applications within clinical environments.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1507448"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1507448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning and genomic medicine are the mainstays of research in delivering personalized healthcare services for disease diagnosis, risk stratification, tailored treatment, and prediction of adverse effects. However, potential prediction errors in healthcare services can have life-threatening impact, raising reasonable skepticism about whether these applications have practical benefit in clinical settings. Conformal prediction offers a versatile framework for addressing these concerns by quantifying the uncertainty of predictive models. In this perspective review, we investigate potential applications of conformalized models in genomic medicine and discuss the challenges towards bridging genomic medicine applications with clinical practice. We also demonstrate the impact of a binary transductive model and a regression-based inductive model in predicting drug response as well as the performance of a multi-class inductive predictor in addressing distribution shifts in molecular subtyping. The main conclusion is that as machine learning and genomic medicine are increasingly infiltrating healthcare services, conformal prediction has the potential to overcome the safety limitations of current methods and could be effectively integrated into uncertainty-informed applications within clinical environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信