A proximal policy optimisation algorithm-based algorithm for cardiovascular disorders detection.

Q3 Engineering
Yuejiao Niu, Xianchuang Fan, Rong Xue
{"title":"A proximal policy optimisation algorithm-based algorithm for cardiovascular disorders detection.","authors":"Yuejiao Niu, Xianchuang Fan, Rong Xue","doi":"10.1080/03091902.2025.2471332","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) significantly impact athletes, impacting the heart and blood vessels. This article introduces a novel method to assess CVD in athletes through an artificial neural network (ANN). The model utilises the mutual learning-based artificial bee colony (ML-ABC) algorithm to set initial weights and proximal policy optimisation (PPO) to address imbalanced classification. ML-ABC uses mutual learning to enhance the learning process by updating the positions of the food sources with respect to the best fitness outcomes of two randomly selected individuals. PPO makes updates in the ANN stable and efficient to improve the model's reliability. Our approach formulates the classification problem as a series of decision-making processes, rewarding every classification act with higher rewards for correctly identifying the instances of the minority class, hence handling class imbalance. We evaluated the model's performance on a diversified medical dataset including 26,002 athletes who were examined within the Polyclinic for Occupational Health and Sports in Zagreb, further validated with NCAA and NHANES datasets to verify generalisability. Our findings indicate that our model outperforms existing models with accuracies of 0.88, 0.86 and 0.82 for the respective datasets. These results enhance clinical model application and advance cardiovascular disorder detection and methodologies.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2471332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases (CVDs) significantly impact athletes, impacting the heart and blood vessels. This article introduces a novel method to assess CVD in athletes through an artificial neural network (ANN). The model utilises the mutual learning-based artificial bee colony (ML-ABC) algorithm to set initial weights and proximal policy optimisation (PPO) to address imbalanced classification. ML-ABC uses mutual learning to enhance the learning process by updating the positions of the food sources with respect to the best fitness outcomes of two randomly selected individuals. PPO makes updates in the ANN stable and efficient to improve the model's reliability. Our approach formulates the classification problem as a series of decision-making processes, rewarding every classification act with higher rewards for correctly identifying the instances of the minority class, hence handling class imbalance. We evaluated the model's performance on a diversified medical dataset including 26,002 athletes who were examined within the Polyclinic for Occupational Health and Sports in Zagreb, further validated with NCAA and NHANES datasets to verify generalisability. Our findings indicate that our model outperforms existing models with accuracies of 0.88, 0.86 and 0.82 for the respective datasets. These results enhance clinical model application and advance cardiovascular disorder detection and methodologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信