Distinguishing Pathologic Gait in Older Adults Using Instrumented Insoles and Deep Neural Networks.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wonhee Lee, Jin Hyun, Seung-Ick Choi, Sangbu Yun, Kwangho Chung, Seok Jong Chung, Jun Kyu Hwang, Eun Joo Yang, Youngjoo Lee, Na Young Kim
{"title":"Distinguishing Pathologic Gait in Older Adults Using Instrumented Insoles and Deep Neural Networks.","authors":"Wonhee Lee, Jin Hyun, Seung-Ick Choi, Sangbu Yun, Kwangho Chung, Seok Jong Chung, Jun Kyu Hwang, Eun Joo Yang, Youngjoo Lee, Na Young Kim","doi":"10.1109/JBHI.2025.3549454","DOIUrl":null,"url":null,"abstract":"<p><p>Gait abnormalities are common in the older population owing to aging- and disease-related changes in physical and neurological functions. Differentiating the causes of gait abnormalities is challenging because various abnormal gaits share a similar pattern in older patients. Herein, we propose a deep neural network (DNN) model to classify disease-specific gait patterns in older adults using commercialized instrumented insoles. This study included 150 patients aged ≥ 65 years, divided into the following five groups (N = 30 in each group): healthy older individuals (HI), patients with Parkinson's disease (PD), patients with spastic hemiplegic gait due to stroke (SH), patients with normal-pressure hydrocephalus (NPH), and patients with knee osteoarthritis (OA). Participants performed the timed up and go test (TUGT) wearing the commercialized instrumented insole, GDCA-MD (Gilon, Republic of Korea). Seven data streams were collected from each insole using a 3-axis accelerometer and four pressure sensors and were analyzed. First, the statistical differences among groups in spatiotemporal features during TUGT, such as step count, step length, velocity, acceleration, regularity, and symmetricity, were examined. Second, a two-stage DNN model was developed that distinguishes HI from others in the first network and classifies the pathologic groups in the second network. The areas under the curve were 0.96, 0.88, 0.98, 0.96, and 0.97 for identifying HI, PD, OA, SH, and NPH, respectively. We demonstrated that the proposed DNN model can reliably classify gait abnormalities in an older population using simple instrumented insoles and a test.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3549454","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Gait abnormalities are common in the older population owing to aging- and disease-related changes in physical and neurological functions. Differentiating the causes of gait abnormalities is challenging because various abnormal gaits share a similar pattern in older patients. Herein, we propose a deep neural network (DNN) model to classify disease-specific gait patterns in older adults using commercialized instrumented insoles. This study included 150 patients aged ≥ 65 years, divided into the following five groups (N = 30 in each group): healthy older individuals (HI), patients with Parkinson's disease (PD), patients with spastic hemiplegic gait due to stroke (SH), patients with normal-pressure hydrocephalus (NPH), and patients with knee osteoarthritis (OA). Participants performed the timed up and go test (TUGT) wearing the commercialized instrumented insole, GDCA-MD (Gilon, Republic of Korea). Seven data streams were collected from each insole using a 3-axis accelerometer and four pressure sensors and were analyzed. First, the statistical differences among groups in spatiotemporal features during TUGT, such as step count, step length, velocity, acceleration, regularity, and symmetricity, were examined. Second, a two-stage DNN model was developed that distinguishes HI from others in the first network and classifies the pathologic groups in the second network. The areas under the curve were 0.96, 0.88, 0.98, 0.96, and 0.97 for identifying HI, PD, OA, SH, and NPH, respectively. We demonstrated that the proposed DNN model can reliably classify gait abnormalities in an older population using simple instrumented insoles and a test.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信