Emelia Karlsson, Olivia Andén, Chen Fan, Zaineb Fourati, Ahmed Haouz, Yuxuan Zhuang, Rebecca J Howard, Marc Delarue, Erik Lindahl
{"title":"Vestibular modulation by stimulant derivatives in a pentameric ligand-gated ion channel.","authors":"Emelia Karlsson, Olivia Andén, Chen Fan, Zaineb Fourati, Ahmed Haouz, Yuxuan Zhuang, Rebecca J Howard, Marc Delarue, Erik Lindahl","doi":"10.1111/bph.70011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Allosteric modulation of pentameric ligand-gated ion channels (pLGICs) are critical for the action of neurotransmitters and many psychoactive drugs. However, details of their modulatory mechanisms remain unclear, especially beyond the orthosteric neurotransmitter-binding sites. The recently reported prokaryotic symbiont of Tevnia jerichonana ligand-gated ion channel (sTeLIC), a pH-gated homologue of eukaryotic receptors in the pLGIC family, is thought to be modulated by aromatic compounds via a relatively uncharacterised modulatory site in the extracellular vestibule.</p><p><strong>Experimental approach: </strong>We have characterised the effects of psychostimulant derivatives on sTeLIC using two-electrode voltage-clamp electrophysiology in the presence and absence of engineered mutations, and determined X-ray and cryo-EM structures of the channel in both closed and open states.</p><p><strong>Key results: </strong>We have shown that sTeLIC is sensitive to potentiation by several amphiphilic compounds, which preferentially bind to a vestibular pocket in the contracted open-state extracellular domain.</p><p><strong>Conclusions and implications: </strong>This work provides a detailed structure-function mechanism for allosteric potentiation via a noncanonical ligand site, with potential conservation of the eukaryotic pentameric ligand-gated ion channels.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.70011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Allosteric modulation of pentameric ligand-gated ion channels (pLGICs) are critical for the action of neurotransmitters and many psychoactive drugs. However, details of their modulatory mechanisms remain unclear, especially beyond the orthosteric neurotransmitter-binding sites. The recently reported prokaryotic symbiont of Tevnia jerichonana ligand-gated ion channel (sTeLIC), a pH-gated homologue of eukaryotic receptors in the pLGIC family, is thought to be modulated by aromatic compounds via a relatively uncharacterised modulatory site in the extracellular vestibule.
Experimental approach: We have characterised the effects of psychostimulant derivatives on sTeLIC using two-electrode voltage-clamp electrophysiology in the presence and absence of engineered mutations, and determined X-ray and cryo-EM structures of the channel in both closed and open states.
Key results: We have shown that sTeLIC is sensitive to potentiation by several amphiphilic compounds, which preferentially bind to a vestibular pocket in the contracted open-state extracellular domain.
Conclusions and implications: This work provides a detailed structure-function mechanism for allosteric potentiation via a noncanonical ligand site, with potential conservation of the eukaryotic pentameric ligand-gated ion channels.
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.