{"title":"An Overview of Virus-Free Protein Expression in Insect Cells: A Mode of Rapid Manufacturing Platform for Therapeutic Protein and Virus-Like-Particles.","authors":"Jagadeesh Mahadevan, Kishalay Mitra, Lopamudra Giri","doi":"10.1002/bit.28961","DOIUrl":null,"url":null,"abstract":"<p><p>Production of therapeutic proteins, antibodies, and virus-like particles (VLP) using baculovirus expression systems (BEVS) has been explored for decades. However, we have realized an urgent need for accelerated production of recombinant proteins and VLPs to address critical situations in recent scenarios. In contrast to BEVSs, the virus-free method is significantly shorter as it bypasses the time-consuming process of infectivity monitoring and virus amplification. Moreover, in the virus-free method, complex steps of protein separation can be eliminated to ease downstream processing. Hence, we present a detailed review of the recent techniques for expressing recombinant proteins, therapeutics, and VLP in insect cells using virus-free methods. First, we focus on the specific methodologies used to optimize virus-free transfection. Here, we provide insight into the interplay between crucial factors, including concentration of transfection reagent, seeding density, and medium temperature. Secondly, we provide a structured review of the novel transfection reagents used for transient and stable transfection. Thirdly, we performed an assessment of the cell lines and plasmids used for virus-free expression and their evaluation based on corresponding protein yield. Finally, we provide the recent advancement in scaling up the transfection process from the shaker flask to the bioreactor level to achieve better yield. Various virus-free expression methodologies presented in this article are essential for evaluating the transfection processes toward improving protein yield. The readers can also use the information to design experiments and optimize process parameters for bioreactor operation.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28961","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Production of therapeutic proteins, antibodies, and virus-like particles (VLP) using baculovirus expression systems (BEVS) has been explored for decades. However, we have realized an urgent need for accelerated production of recombinant proteins and VLPs to address critical situations in recent scenarios. In contrast to BEVSs, the virus-free method is significantly shorter as it bypasses the time-consuming process of infectivity monitoring and virus amplification. Moreover, in the virus-free method, complex steps of protein separation can be eliminated to ease downstream processing. Hence, we present a detailed review of the recent techniques for expressing recombinant proteins, therapeutics, and VLP in insect cells using virus-free methods. First, we focus on the specific methodologies used to optimize virus-free transfection. Here, we provide insight into the interplay between crucial factors, including concentration of transfection reagent, seeding density, and medium temperature. Secondly, we provide a structured review of the novel transfection reagents used for transient and stable transfection. Thirdly, we performed an assessment of the cell lines and plasmids used for virus-free expression and their evaluation based on corresponding protein yield. Finally, we provide the recent advancement in scaling up the transfection process from the shaker flask to the bioreactor level to achieve better yield. Various virus-free expression methodologies presented in this article are essential for evaluating the transfection processes toward improving protein yield. The readers can also use the information to design experiments and optimize process parameters for bioreactor operation.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.