Zi-Wei Dai, Hong Liu, Yi-Min Yuan, Jing-Yi Zhang, Shang-Yao Qin, Zhi-Da Su
{"title":"[Advances in application of small-molecule compounds in neuronal reprogramming].","authors":"Zi-Wei Dai, Hong Liu, Yi-Min Yuan, Jing-Yi Zhang, Shang-Yao Qin, Zhi-Da Su","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal reprogramming is an innovative technique for converting non-neuronal somatic cells into neurons that can be used to replace lost or damaged neurons, providing a potential effective therapeutic strategy for central nervous system (CNS) injuries or diseases. Transcription factors have been used to induce neuronal reprogramming, while their reprogramming efficiency is relatively low, and the introduction of exogenous genes may result in host gene instability or induce gene mutation. Therefore, their future clinical application may be hindered by these safety concerns. Compared with transcription factors, small-molecule compounds have unique advantages in the field of neuronal reprogramming, which can overcome many limitations of traditional transcription factor-induced neuronal reprogramming. Here, we review the recent progress in the research of small-molecule compound-mediated neuronal reprogramming and its application in CNS regeneration and repair.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 1","pages":"181-193"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Neuronal reprogramming is an innovative technique for converting non-neuronal somatic cells into neurons that can be used to replace lost or damaged neurons, providing a potential effective therapeutic strategy for central nervous system (CNS) injuries or diseases. Transcription factors have been used to induce neuronal reprogramming, while their reprogramming efficiency is relatively low, and the introduction of exogenous genes may result in host gene instability or induce gene mutation. Therefore, their future clinical application may be hindered by these safety concerns. Compared with transcription factors, small-molecule compounds have unique advantages in the field of neuronal reprogramming, which can overcome many limitations of traditional transcription factor-induced neuronal reprogramming. Here, we review the recent progress in the research of small-molecule compound-mediated neuronal reprogramming and its application in CNS regeneration and repair.
期刊介绍:
Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.