Yu-Hong Liu, Hong-Quan Xu, Si-Si Zhu, Yan-Feng Hong, Xiu-Wen Li, Hong-Xiu Li, Jun-Peng Xiong, Huan Xiao, Jin-Hui Bu, Feng Zhu, Lin Tao
{"title":"ASVirus: A Comprehensive Knowledgebase for the Viral Alternative Splicing.","authors":"Yu-Hong Liu, Hong-Quan Xu, Si-Si Zhu, Yan-Feng Hong, Xiu-Wen Li, Hong-Xiu Li, Jun-Peng Xiong, Huan Xiao, Jin-Hui Bu, Feng Zhu, Lin Tao","doi":"10.1021/acs.jcim.4c02214","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses are significant human pathogens responsible for pandemic outbreaks and seasonal epidemics. Viral infectious diseases impose a devastating global burden and have a profound impact on public health systems. During viral infections, alternative splicing (AS) plays a crucial role in regulating immune responses, altering the host's cellular environment, expanding viral genetic material, and facilitating viral replication. As research on AS in viral infections expands, it is crucial to consolidate data on virus-related splicing changes to improve our understanding of these viruses and associated diseases. To address this need, we created ASVirus (https://bddg.hznu.edu.cn/asvirus/), a comprehensive database of virus-associated AS events and their regulatory factors. ASVirus uniquely combines high-confidence, experimentally validated splicing data and investigates upstream regulatory mechanisms through a gene-splicing factor interaction network. Its user-friendly web interface offers detailed information into AS events from various viral families and the resulting mis-splicing in host genes, aiding the exploration of novel viral infection mechanisms and the identification of critical therapeutic targets for viral diseases.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"2722-2729"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02214","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Viruses are significant human pathogens responsible for pandemic outbreaks and seasonal epidemics. Viral infectious diseases impose a devastating global burden and have a profound impact on public health systems. During viral infections, alternative splicing (AS) plays a crucial role in regulating immune responses, altering the host's cellular environment, expanding viral genetic material, and facilitating viral replication. As research on AS in viral infections expands, it is crucial to consolidate data on virus-related splicing changes to improve our understanding of these viruses and associated diseases. To address this need, we created ASVirus (https://bddg.hznu.edu.cn/asvirus/), a comprehensive database of virus-associated AS events and their regulatory factors. ASVirus uniquely combines high-confidence, experimentally validated splicing data and investigates upstream regulatory mechanisms through a gene-splicing factor interaction network. Its user-friendly web interface offers detailed information into AS events from various viral families and the resulting mis-splicing in host genes, aiding the exploration of novel viral infection mechanisms and the identification of critical therapeutic targets for viral diseases.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.