{"title":"Engineering Chromatin Regulation of Xylose Utilization in Budding Yeast <i>Saccharomyces cerevisiae</i> for Efficient Bioconversion.","authors":"Wei-Bin Wang, Rui-Qi Tang, Bing Yuan, Yue Wang, Guo-Dong Liu, Dong-Min Li, Hong-Jia Zhang, Xin-Qing Zhao, Feng-Wu Bai","doi":"10.1021/acssynbio.4c00730","DOIUrl":null,"url":null,"abstract":"<p><p>Utilization of xylose as a renewable carbon source has received constant interest. Considering that the structure and state of eukaryotic chromatin are inextricably intertwined, it is significant to explore chromatin regulation for engineering xylose metabolism in yeast. Here, we show that two chromatin remodelers, namely, Swr1 and Isw1, affect xylose utilization in recombinant budding yeast<i>Saccharomyces cerevisiae</i>. Overexpressing <i>SWR1</i> showed the highest increase in xylose utilization, up to 29.3%, compared to that of the parent strain. Furthermore, comparative transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed significantly different changes of gene expression by elevated expression of Swr1 and Isw1. Reduced histone H2A.Z occupancy in two key carbon-metabolism regulators of Mig2 and Sip2 was further observed in the engineered yeast. Further tests showed improved xylose utilization of the engineered yeast in the presence of corncob hydrolysate. Our results suggest that chromatin regulators are critical genetic elements in recombinant <i>S. cerevisiae</i> for engineering xylose metabolism.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00730","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Utilization of xylose as a renewable carbon source has received constant interest. Considering that the structure and state of eukaryotic chromatin are inextricably intertwined, it is significant to explore chromatin regulation for engineering xylose metabolism in yeast. Here, we show that two chromatin remodelers, namely, Swr1 and Isw1, affect xylose utilization in recombinant budding yeastSaccharomyces cerevisiae. Overexpressing SWR1 showed the highest increase in xylose utilization, up to 29.3%, compared to that of the parent strain. Furthermore, comparative transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed significantly different changes of gene expression by elevated expression of Swr1 and Isw1. Reduced histone H2A.Z occupancy in two key carbon-metabolism regulators of Mig2 and Sip2 was further observed in the engineered yeast. Further tests showed improved xylose utilization of the engineered yeast in the presence of corncob hydrolysate. Our results suggest that chromatin regulators are critical genetic elements in recombinant S. cerevisiae for engineering xylose metabolism.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.