Dynamics Analysis of a Delayed HIV Model With Latent Reservoir and Both Viral and Cellular Infections

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Lili Lv, Junxian Yang, Zihao Hu, Dongmei Fan
{"title":"Dynamics Analysis of a Delayed HIV Model With Latent Reservoir and Both Viral and Cellular Infections","authors":"Lili Lv,&nbsp;Junxian Yang,&nbsp;Zihao Hu,&nbsp;Dongmei Fan","doi":"10.1002/mma.10655","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents an HIV model with latent reservoir and a constant production rate of cytotoxic T lymphocytes (CTLs). The system incorporates two delays, intracellular delay \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\tau}_1 $$</annotation>\n </semantics></math> and immune response delay \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\tau}_2 $$</annotation>\n </semantics></math>, and considers two mechanisms of viral transmission in vivo: cell-to-cell and virus-to-cell. Based on the initial condition, a key threshold in the model, namely, the basic reproduction number \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {R}_0 $$</annotation>\n </semantics></math> is obtained. Our focus is to investigate the impact of saturated immune delay on viral infection when CTLs are introduced at a constant rate. By constructing Lyapunov functionals, the stability conditions of equilibrium \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {E}_0 $$</annotation>\n </semantics></math> and equilibrium \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {E}^{\\ast}\\left({\\tau}_2=0\\right) $$</annotation>\n </semantics></math> are established. Theoretical analysis indicates that equilibrium \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {E}^{\\ast } $$</annotation>\n </semantics></math> no longer remains stable and generates a Hopf bifurcation as immune delay \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\tau}_2 $$</annotation>\n </semantics></math> changes. Numerical simulations are conducted to validate the main theoretical results, and sensitivity analysis is used to evaluate the impact of the parameters on the threshold. Through these simulations, the general patterns of dynamic behavior of the model are revealed. In particular, when \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ {\\tau}_1&gt;0 $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ {\\tau}_2&gt;0 $$</annotation>\n </semantics></math>, the dynamics of the endemic equilibrium \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {E}^{\\ast } $$</annotation>\n </semantics></math> exhibit complex behavior.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 5","pages":"6063-6080"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10655","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an HIV model with latent reservoir and a constant production rate of cytotoxic T lymphocytes (CTLs). The system incorporates two delays, intracellular delay τ 1 $$ {\tau}_1 $$ and immune response delay τ 2 $$ {\tau}_2 $$ , and considers two mechanisms of viral transmission in vivo: cell-to-cell and virus-to-cell. Based on the initial condition, a key threshold in the model, namely, the basic reproduction number R 0 $$ {R}_0 $$ is obtained. Our focus is to investigate the impact of saturated immune delay on viral infection when CTLs are introduced at a constant rate. By constructing Lyapunov functionals, the stability conditions of equilibrium E 0 $$ {E}_0 $$ and equilibrium E ( τ 2 = 0 ) $$ {E}^{\ast}\left({\tau}_2=0\right) $$ are established. Theoretical analysis indicates that equilibrium E $$ {E}^{\ast } $$ no longer remains stable and generates a Hopf bifurcation as immune delay τ 2 $$ {\tau}_2 $$ changes. Numerical simulations are conducted to validate the main theoretical results, and sensitivity analysis is used to evaluate the impact of the parameters on the threshold. Through these simulations, the general patterns of dynamic behavior of the model are revealed. In particular, when τ 1 > 0 $$ {\tau}_1>0 $$ and τ 2 > 0 $$ {\tau}_2>0 $$ , the dynamics of the endemic equilibrium E $$ {E}^{\ast } $$ exhibit complex behavior.

本文提出了一个具有潜伏库和恒定细胞毒性 T 淋巴细胞(CTL)产生率的 HIV 模型。该系统包含两种延迟,即细胞内延迟 τ 1 $$ {\tau}_1 $$和免疫反应延迟 τ 2 $$ {\tau}_2 $$,并考虑了病毒在体内的两种传播机制:细胞间传播和病毒间传播。根据初始条件,可以得到模型中的一个关键阈值,即基本繁殖数 R 0 $$ {R}_0 $$。我们的重点是研究当 CTL 以恒定速率引入时,饱和免疫延迟对病毒感染的影响。通过构建 Lyapunov 函数,建立了平衡 E 0 $$ {E}_0 $$ 和平衡 E ∗ ( τ 2 = 0 ) $$ {E}^\{ast}\left({\tau}_2=0\right) $$ 的稳定性条件。理论分析表明,均衡 E ∗ $$ {E}^{\ast }$$ 不再保持稳定,并且随着免疫延迟 τ 2 $$ {\tau}_2 $$ 的变化而产生霍普夫分岔。为了验证主要理论结果,我们进行了数值模拟,并使用敏感性分析来评估参数对阈值的影响。通过这些模拟,揭示了模型动态行为的一般模式。特别是,当 τ 1 > 0 $$ {\tau}_1>0 $$ 和 τ 2 > 0 $$ {\tau}_2>0 $$ 时,地方性均衡 E ∗ $$ {E}^{\ast } $$ 的动态表现出复杂的行为。$$ 表现出复杂的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信