{"title":"CLA-UNet: Convolution and Focused Linear Attention Fusion for Tumor Cell Nucleus Segmentation","authors":"Wei Guo, Zhanxu Liu, Yu Ou","doi":"10.1002/ima.70041","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The accurate diagnosis of tumors is crucial for improving treatment outcomes. To precisely delineate the nucleus regions of tumor cells in hematoxylin and eosin (H&E) stained tissue images and reduce computational overhead, we propose a novel encoder-decoder architecture named Convolution and focused linear attention fusion UNet (CLA-UNet), which integrates depthwise separable convolution and convolution-focused linear attention into the U-Net network. The innovation of this study is reflected in the following three aspects: first, at the skip connections, it utilizes the Global–Local Feature Fusion and Split-Input Transformer (GLFS Transformer) block to extract global feature information, which is then input to the corresponding layers of the decoder; second, it employs depthwise separable convolution blocks to construct the backbone network, thereby deepening the network; finally, it adds a channel attention module at the decoder to focus on important channel information. Experimental results on the MoNuSeg public database of tumor cells show that the algorithm achieves an IoU, Dice score, precision, and recall of 66.18%, 79.57%, 83.23%, and 76.91%, respectively. Compared with other segmentation methods, this algorithm demonstrates superior segmentation performance. The model proposed in this study significantly outperforms other comparison models in segmentation results, while maintaining an extremely low parameter count and computational cost. The lightweight design of the model facilitates the promotion and application of this research.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate diagnosis of tumors is crucial for improving treatment outcomes. To precisely delineate the nucleus regions of tumor cells in hematoxylin and eosin (H&E) stained tissue images and reduce computational overhead, we propose a novel encoder-decoder architecture named Convolution and focused linear attention fusion UNet (CLA-UNet), which integrates depthwise separable convolution and convolution-focused linear attention into the U-Net network. The innovation of this study is reflected in the following three aspects: first, at the skip connections, it utilizes the Global–Local Feature Fusion and Split-Input Transformer (GLFS Transformer) block to extract global feature information, which is then input to the corresponding layers of the decoder; second, it employs depthwise separable convolution blocks to construct the backbone network, thereby deepening the network; finally, it adds a channel attention module at the decoder to focus on important channel information. Experimental results on the MoNuSeg public database of tumor cells show that the algorithm achieves an IoU, Dice score, precision, and recall of 66.18%, 79.57%, 83.23%, and 76.91%, respectively. Compared with other segmentation methods, this algorithm demonstrates superior segmentation performance. The model proposed in this study significantly outperforms other comparison models in segmentation results, while maintaining an extremely low parameter count and computational cost. The lightweight design of the model facilitates the promotion and application of this research.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.