Matthew Wiens, Alissa Verone-Boyle, Nick Henscheid, Jagdeep T. Podichetty, Jackson Burton
{"title":"A Tutorial and Use Case Example of the eXtreme Gradient Boosting (XGBoost) Artificial Intelligence Algorithm for Drug Development Applications","authors":"Matthew Wiens, Alissa Verone-Boyle, Nick Henscheid, Jagdeep T. Podichetty, Jackson Burton","doi":"10.1111/cts.70172","DOIUrl":null,"url":null,"abstract":"<p>Approaches to artificial intelligence and machine learning (AI/ML) continue to advance in the field of drug development. A sound understanding of the underlying concepts and guiding principles of AI/ML implementation is a prerequisite to identifying which AI/ML approach is most appropriate based on the context. This tutorial focuses on the concepts and implementation of the popular eXtreme gradient boosting (XGBoost) algorithm for classification and regression of simple clinical trial-like datasets. Emphasis is placed on relating the underlying concepts to the code implementation. In doing so, the aim is for the reader to gain knowledge about the underlying algorithm and become better versed with how to implement the algorithm functions for relevant clinical drug development questions. In turn, this will provide practical ML experience which can be applied to algorithms and problems beyond the scope of this tutorial.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"18 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70172","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Approaches to artificial intelligence and machine learning (AI/ML) continue to advance in the field of drug development. A sound understanding of the underlying concepts and guiding principles of AI/ML implementation is a prerequisite to identifying which AI/ML approach is most appropriate based on the context. This tutorial focuses on the concepts and implementation of the popular eXtreme gradient boosting (XGBoost) algorithm for classification and regression of simple clinical trial-like datasets. Emphasis is placed on relating the underlying concepts to the code implementation. In doing so, the aim is for the reader to gain knowledge about the underlying algorithm and become better versed with how to implement the algorithm functions for relevant clinical drug development questions. In turn, this will provide practical ML experience which can be applied to algorithms and problems beyond the scope of this tutorial.
期刊介绍:
Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.