Spiral-Like Trajectories of Singularities at Fresnel Diffraction on Double Fork-Shaped Gratings

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Denis A. Ikonnikov, Sergey A. Myslivets
{"title":"Spiral-Like Trajectories of Singularities at Fresnel Diffraction on Double Fork-Shaped Gratings","authors":"Denis A. Ikonnikov,&nbsp;Sergey A. Myslivets","doi":"10.1002/andp.202400319","DOIUrl":null,"url":null,"abstract":"<p>Fresnel diffraction on double fork-shaped gratings is studied. The trajectories of singularities are found to form two groups of nested spirals, with one originating from each dislocation. The number of spirals nested in each group is found to be equal to the topological charge of the dislocation from which it originates. The influence of the initial distance between dislocations on the trajectories of singularities is examined in detail, and the distinctive characteristics of this dependence are highlighted. The trajectory of the displacement of centroids of singularities from one group of nested spirals during the propagation for various topological charges is investigated. The results demonstrate that the higher the topological of the second dislocation is, the faster the centroid from the first dislocation will shift along the <span></span><math>\n <semantics>\n <mi>y</mi>\n <annotation>$y$</annotation>\n </semantics></math> axis during the propagation. This finding indicates that the trajectory of singularities displacement is not defined by the singularity itself, but rather by the background field, which correlates well with the hydrodynamic approach.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400319","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fresnel diffraction on double fork-shaped gratings is studied. The trajectories of singularities are found to form two groups of nested spirals, with one originating from each dislocation. The number of spirals nested in each group is found to be equal to the topological charge of the dislocation from which it originates. The influence of the initial distance between dislocations on the trajectories of singularities is examined in detail, and the distinctive characteristics of this dependence are highlighted. The trajectory of the displacement of centroids of singularities from one group of nested spirals during the propagation for various topological charges is investigated. The results demonstrate that the higher the topological of the second dislocation is, the faster the centroid from the first dislocation will shift along the y $y$ axis during the propagation. This finding indicates that the trajectory of singularities displacement is not defined by the singularity itself, but rather by the background field, which correlates well with the hydrodynamic approach.

Abstract Image

双叉形光栅菲涅耳衍射奇异点的螺旋轨迹
研究了双叉形光栅上的菲涅耳衍射。发现奇点的轨迹形成两组嵌套的螺旋,其中一组起源于每个位错。在每一组中嵌套的螺旋数被发现等于它起源的位错的拓扑电荷。详细研究了位错之间的初始距离对奇点轨迹的影响,并强调了这种依赖的独特特征。研究了一组嵌套螺旋的奇异质心在不同拓扑电荷的传播过程中的位移轨迹。结果表明:第二位错的拓扑结构越高,第一位错的质心在传播过程中沿y$ y$轴移动的速度越快;这一发现表明奇异点位移轨迹不是由奇异点本身决定的,而是由背景场决定的,这与流体力学方法有很好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信