Xinhao Zhang, Mingjing Geng, Caiyou Zhao, Yawen Niu, Ping Wang
{"title":"Acoustic Metamaterial Composite Structures Based on Multistage Fano Resonance for Noise Attenuation","authors":"Xinhao Zhang, Mingjing Geng, Caiyou Zhao, Yawen Niu, Ping Wang","doi":"10.1002/andp.202400224","DOIUrl":null,"url":null,"abstract":"<p>An acoustic metamaterial composite structure (AMCS) for Noise attenuation is proposed based on the principle of multilevel Fano resonance. The AMCS is composed of a type I labyrinthine metamaterial in the outer ring, a six-channel spiral metamaterial in the middle ring, a type II labyrinthine metamaterial in the inner ring, and a porous acoustic-absorbing metamaterial in the inner inlay. The simulation results show that the average sound attenuation reaches 17 dB in the range of 0–5000 Hz due to the multilevel Fano resonance effect during the sound wave propagation process. Meanwhile, the sound field distribution law and the flow diagram also verify that the multilevel Fano resonance mechanism is the key factor causing broadband sound absorption. Then, the AMCS is fabricated by 3D printing, and the simulation results are verified by the acoustic experiment for AMCS cell. Additionally, to further enhance the overall sound attenuation in the railroad noise field, a simulation model of the combined train-track-AMCS sound barrier coupling is developed, and it is found that the AMCS type sound barrier can effectively block the propagation of wheel-rail noise from different angles, and it possesses a noise reduction of 20 dB in all frequency bands.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400224","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An acoustic metamaterial composite structure (AMCS) for Noise attenuation is proposed based on the principle of multilevel Fano resonance. The AMCS is composed of a type I labyrinthine metamaterial in the outer ring, a six-channel spiral metamaterial in the middle ring, a type II labyrinthine metamaterial in the inner ring, and a porous acoustic-absorbing metamaterial in the inner inlay. The simulation results show that the average sound attenuation reaches 17 dB in the range of 0–5000 Hz due to the multilevel Fano resonance effect during the sound wave propagation process. Meanwhile, the sound field distribution law and the flow diagram also verify that the multilevel Fano resonance mechanism is the key factor causing broadband sound absorption. Then, the AMCS is fabricated by 3D printing, and the simulation results are verified by the acoustic experiment for AMCS cell. Additionally, to further enhance the overall sound attenuation in the railroad noise field, a simulation model of the combined train-track-AMCS sound barrier coupling is developed, and it is found that the AMCS type sound barrier can effectively block the propagation of wheel-rail noise from different angles, and it possesses a noise reduction of 20 dB in all frequency bands.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.